

Training-free Inference Acceleration of Generative Models

Training-free acceleration of Diffusion Models

- While these architectural strategies effectively reduce sampling latency, they exhibit lower faithfulness to the original samples :
 - (a) Fixed acceleration patterns cannot be effectively adapted to the variability of each prompt's denoising trajectory.
 - (b) Such methods do not explicitly leverage the underlying ODE formulation of the denoising process, nor interplay with the specific ODE-solver used

Adaptive Exploit Sparsity with Unified Stability Measure

- SADA: Adaptive acceleration based on a stability criterion measured via the velocity of sampling trajectory $y = \frac{dx_t}{dt}$. The **criterion** is derived as: $(x_{t-1} \hat{x}_{t-1}) \cdot \Delta^{(2)} y_t < 0$.
 - (a) If < 0: returns True, conduct Step-wise Cache-Assisted Pruning
 - (b) If > 0: returns False, conduct Token-wise Cache-Assisted Pruning

Adaptive Sampling with Principled Approximation

If the criterion returns True:

a. In the **first half** of diffusion process, **Step-wise**:

$$\hat{x}_{t-1} := x_t - \frac{5\Delta t}{6}y_t - \frac{5\Delta t}{6}y_{t+1} + \frac{2\Delta t}{3}y_{t+2}$$

We leverage the *precise gradients* calculated by the ODE Solvers

b. In the **second half** of diffusion process, **Multistep**:

$$\hat{x}_0^t := \sum_{i \in I} \left(\prod_{j \in I \setminus \{i\}} \frac{t - t_j}{t_i - t_j} \right) x_0^{t_i}.$$

If returns False: c. the criterion becomes a binary mask that **prunes out "stable tokens"** and **compute the rest**

Note: Both approximation schemes eventually yields a per-step clean image, x_0^t , which error is bounded. See detailed proof in our original paper.

Empirical results

Model	Scheduler	Methods	PSNR \uparrow	LPIPS \downarrow	$FID\downarrow$	Speedup Ratio
SD-2	DPM++	DeepCache	17.70	0.271	7.83	1.43×
		AdaptiveDiffusion	24.30	0.100	4.35	$1.45 \times$
		SADA	26.34	0.094	4.02	1.80 ×
		DeepCache	18.90	0.239	7.40	1.45×
	Euler	AdaptiveDiffusion	21.90	0.173	7.58	1.89 ×
		SADA	26.25	0.100	4.26	$1.81 \times$
SDXL		DeepCache	21.30	0.255	8.48	1.74×
	DPM++	AdaptiveDiffusion	26.10	0.125	4.59	$1.65 \times$
		SADA	29.36	0.084	3.51	1.86 ×
		DeepCache	22.00	0.223	7.36	2.16 ×
	Euler	AdaptiveDiffusion	24.33	0.168	6.11	$2.01 \times$
		SADA	28.97	0.093	3.76	$1.85 \times$
Flux	Flow-matching	TeaCache	19.14	0.216	4.89	$2.00 \times$
		SADA	29.44	0.060	1.95	2.02 ×

Table 1. Quantitative results on MS-COCO 2017 (Lin et al., 2014).

Empirical results

"A fantastic piece of music with the deep sound of overlapping pianos"

"A deer."

Base Image

ControlNet Baseline (4.76 s)

