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What is Gaussian Ensembles?

We now produce a N × N matrix H whose entries are independently
sampled from a Gaussian probability density function with mean 0
and variance 1. To get real eigenvalues, the first thing to do is to
symmetrize our matrix. Recall that a real symmetric matrix has N
real eigenvalues.

Definition
Symmetrizing Hs =

H+HT
2 , then the eigenvalues of Hs is real. We call Hs is

a sample of Gaussian Orthogonal Ensembles(GOE).
Similarly, we can make the entries complex or quaternionic instead of real,
then we get the Gaussian Unitary Ensembles(GUE) and Gaussian
Symplectic Ensembles(GSE), respectively.
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Layman’s Classification
Why Gaussian ensembles are important?

The universe we are working on

X =


real symmetric
complex hermitian
quaternion self-dual

Independent entries: the first group on the left gathers matrix
models whose entries are independent random variables - modulo the
symmetry requirements. Random matrices of this kind are usually
called Wigner matrices
Rotational invariance: the second group on the right is
characterized by the so-called rotational invariance. In essence, this
property means that any two matrices that are related via a similarity
transformation H ′ d

= UHU−1.
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Layman’s Classification
Why Gaussian ensembles are important?

Figure: Layman’s classification
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Layman’s Classification
Why Gaussian ensembles are important?

Proposition(The orthogonal invariance of GOE)
Let HN be a random matrix drawn from GOE and ∀U ∈ O(n), then the
UHNU−1 is also a sample from GOE.

Proof.
Since HN = H+HT

2 , then we can get UHNU−1 = UHU−1+UHU−1T

2 . So we
only need to prove

UHU−1 ∼ H ⇔ UH ∼ H
⇔ UH∗1 ∼ H∗1

,where the H∗1 is the first column of H. It is easy to see that the entries of
UH∗1 are independent N (0, 1) variables.
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Wigner’s Surmise

Question

Consider a 2 × 2 GOE matrix Hs =
(

X1 X3
X3 X2

)
, with X1,X2 ∼ N (0, 1)

and X3 ∼ N (0, 1/2). What is the pdf p(s) of the spacing S = λ2 − λ1
between its two eigenvalues (λ2 > λ1)?

Proof.
The two eigenvalues are random variables, given in terms of the entries by
the roots of the characteristic polynomial

λ2 − Tr(Hs)λ+ det(Hs)

therefore λ1,2 =
X1+X2±

√
(X1−X2)2+4X2

3
2 and S =

√
(X1 − X2)2 + 4X2

3.
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Wigner’s Surmise

Proof.
It is easy to see that X1 − X2, 2X3 iid ∼ N (0, 2), Changing variables as{

X1 − X2 = R cosΘ

2X3 = R sinΘ

and computing the corresponding Jacobian J =

∣∣∣∣∂x1−x2
∂r

∂x1−x2
∂θ

∂2x3
∂r

∂2x3
∂θ

∣∣∣∣ = r, one

obtains

fR,Θ(r, θ) = f(X1−X2),2X3(r cos θ, r sin θ) |J| =
r

4π e− r2
4

since S=R, thus

fS(s) =
∫ 2π

0
fS,Θ(s, theta) =

∫ 2π

0

s
4π e− s2

4 =
s
2e− s2

4
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Wigner’s Surmise

Remark
We often rescale this pdf and define f̄ (s) = E(S)f (E(S)s) , such that∫∞

0 s f̄ (s) = 1. For the GOE as above, f̄ (s) = πs
2 exp(−πs2/4), which is

called ”Wigner’s surmise”, whose plot is shown below.

Figure: Wigner’s surmise
Yixiao Wang Random Matrices: Theory and Practice April 2023 9 / 41
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Wigner Hermitian matrix ensemble

Definition
A Wigner Hermitian matrix ensemble is a random matrix ensemble
Mn = (mij)1≤i,j≤n of Hermitian matrices (thus mij = mji; this includes real
symmetric matrices as an important special case), in which the
upper-triangular entries mij, i > j are iid complex random variables with
E(mij) = 0 and Var(mij) = 1, and the diagonal entries mii are iid real
variables, independent of the upper-triangular entries, with E(mii) = 0 and
bounded variance. Also ∀k ≥ 2, ∀i, j, the kth moment of mij is existed.

Particular special cases
Particular special cases of interest include the Gaussian Orthogonal
Ensemble (GOE), the symmetric random sign matrices (aka symmetric
Bernoulli ensemble), and the Gaussian Unitary Ensemble (GUE)
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Wigner’s Semicircle Law

We can generate T matrices from GOE(or GUE, GSE), collect the N
(real) eigenvalues for each of them, and then produce a normalized
histogram of the full set of N × T eigenvalues.We can get a plot for T
= 50000 and N = 8 below.
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Wigner’s Semicircle Law
Now we can generate T N × N matrices whose upper triangle entries
are independently and sampled from standard normal distribution,
then produce a normalized histogram of the full set of N × T
eigenvalues.We can get a plot for T = 500 and N = 200 below.
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Wigner’s Semicircle Law
Jpdf of eigenvalues of Gaussian matrices

Theorem
The jpdf of eigenvalues of a N × N Gaussian matrix is given by

f (x1, · · · , xN) =
1

ZN,β
e− 1

2
∑N

i=1 x2
i
∏
j<k

|xj − xk|β

where

ZN,β = (2π)N/2
N∏

j=1

Γ(1 + jβ/2)
Γ(1 + β/2)

is a normalization constant, enforcing
∫
RN f (x1, . . . , xN)

∏N
j=1 dxj = 1, and

β = 1, 2, 4 is called the Dyson index, which is responding to the GOE,
GUE and GSE respectively. Note that the eigenvalues are considered to be
unordered here.
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Wigner’s Semicircle Law
normalised matrix 1√n Mn

Question
Given a n × n Hermitian matrix Mn, why we use 1√n to normalise it?

Solution
We prove that the eigenvalues of Mn are typically of size O(

√
n). Let

Xn = Mn√n , consider that

n∑
i=1

λ2
i (Xn) = TrX2

N =
1
n TrM2

n =
1
n
∑
i, j

m2
ij

use the SLLN, we have
∑

i, j m2
ij−n2E(m2

ij)

n2 → 0 ,thus λ̄2
i ≈ E(m2

ij) ∼ 1.
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Wigner’s Semicircle Law
Comprehension of empirical spectral distribution

Definition
Given any n × n Hermitian matrix Mn, we can form the (normalised)
empirical spectral distribution (or ESD for short)

µMn/
√n =

1
n

n∑
i=1

δλi(Mn)/
√n

Probability Measure
We can see that µMn/

√n is a probability measure by notice that
µMn/

√n(R) = 1. Also for each set A ∈ B(R), µMn/
√n(A) is equal to the

rate of eigenvalues in A (we only need to consider on R since the
eigenvalues of a hermitian matrix are real).
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Wigner’s Semicircle Law

Wigner’s Semicircle Law
Let σ : B(R) → [0, 1] ,A 7→

∫
A

√
4−x2
2π dx, then σ ∈ Pr(R).

we want to prove that a sequence of random ESDs µ 1√n Mn converge
almost surely to σ.
i.e. ∀ test function f ∈ Cc(R), the quantities

∫
R f dµMn/

√n converge
almost surely to

∫
R f dσ.

Analysis
Weierstrass’s theorem tells us that any continuous function on a compact
interval can be uniformly approximated by polynomials. Thus we only
discuss about the quantities

∫
R xk dµMn/

√n converge almost surely to∫
R xk dσ, ∀k ∈ N∗.
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Wigner’s Semicircle Law

Analysis
Since ∫

R
xk dµMn/

√n =

∫
R

xk 1
n

n∑
i=1

δλi(Xn)(dx) =
∑n

i=1 λ
k
i

n =
TrXk

n
n

and we can derive that

γk :=

∫
R

xk dσ =

∫ 2

−2
xk
√

4 − x2

2π dx =


0 , if k = 2m+1

1
m + 1

(
2m
m

)
, if k = 2m

First we try to prove

E
TrXk

n
n → γk.
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Wigner’s Semicircle Law

proof.

E
TrXk

n
n =

1
nETr

Mk
n√
n = n−( k

2+1)ETr(Mk
n)

= n−( k
2+1)E

n∑
i=1

∑
sequences of length k

mii2mi2i3 . . .miki

= n−( k
2+1)E

∑
sequences of length k

mi1i2mi2i3 . . .miki1

Let’s check each term in the sum.
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Wigner’s Semicircle Law

proof.
We can view each term in the sum as a sequence whose length is 2m.
Since we don’t want the mean of a term equal to zero, we only need to
consider a path where each edge gets traversed at least twice. Then there
will be

[ k
2
]

edges at most. We can prove that a connected graph with
[ k

2
]

edges can only have no more than
[ k

2
]
+ 1 vertices. Furthermore, a

connected graph must be a tree if it has
[ k

2
]

edges and
[ k

2
]
+ 1 vertices.
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Wigner’s Semicircle Law

proof.
If k is odd, we assume k = 2m + 1. Then there at most m + 1 vertices in
the graph

1
nm+ 3

2

(
n

m + 1

)
f(m)

n→∞−−−→ 0

, where f(m) represents the mean of edges after fixed vertices.
If k is even, we assume k = 2m.
If the vertices in the graph are less than m + 1, we assume there are
t (≤ m) different vertices in the graph, then the term will equal to

1
nm+1

(
n
t

)
f (t) ∼ O

(
1

nm+1−t

)
n→∞−−−→ 0

, where f(t) represents the mean of edges after fixed vertices.
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Wigner’s Semicircle Law

proof.
Now we only need to consider the graph that has m edges and m + 1
vertices exactly. For any ordered sequence (i.e. we have fixed the number
of vertices also the visiting sequence). We reordered this sequence as
1, 2, . . . ,m + 1 we can let an

X : j ∈ {1, 2 . . . , 2m} 7→

{
1 , if jth step vist a new vertex
− 1 , otherwise

let S (j) =
∑j

i=1 X(i), then we get a simple random walk in 1 dimension.
We can easy to find that S (j) ≥ 0, ∀j. Furthermore, we can make a
bijective map called F from all these types of paths to (X(1), . . . ,X(2m))
by definition.
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Wigner’s Semicircle Law

proof.
We prove F is bijective first.
To begin with, we prove that we can form a path from any given sequence
satisfy X(i) = ±1, S(i) ≥ 0 with a length of 2m. Let T = {1, 2 . . . ,m+ 1},
T1 = T and A will be a sequence with length 2m to record the vertices
traversed by. For all i ∈ {1, 2 . . . , 2m}, if X(i) = 1, let A(i) = minTi,
Ti+1 = Ti \ {A(i)}.Otherwise we find j satisfy that A(j) = A(i − 1) and
X(j) = 1, then let A(i) = A(j− 1). We can get a path from the sequence A
(A(i) represents the vertex after i steps).
On the one hand, for each sequence in (X(1), . . . ,X(2m)) we can find a
path to be mapped to, thus F is surjective.
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Wigner’s Semicircle Law

proof.
On the other hand, if we have two paths named A,B(A(i) and B(i)
represents the vertex after i steps), but F(A) = F(B). We assume i is the
first index such that A(i) 6= B(i). By definition, X(i) 6= 1, since the order
of the sequence is fixed, thus X(i) = −1. However the graph is a tree,
there will be only one path from the beginning to A(i − 1) = B(i − 1),
then the edge connects from A(i − 1) = B(i − 1) and only traversed once
is determined. Other edges connected from A(i − 1) have been traversed
twice or never. So we can derive that A(i) = B(i), thus F is injective.
As a result, F is bijective.
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Wigner’s Semicircle Law

proof.
Now the problem is change to a problem of random walk.

#{S(i) ≥ 0∀i ∈ {1, 2, . . . , 2m}, S(0) = S(2m) = 0} =

(
2m − 2
m − 1

)
−
(

2m − 2
m − 3

)
=

1
m + 1

(
2m
m

)
Thus

n−( k
2+1)E

∑
sequence of length k

mi1i2mi2i3 . . .miki1

=
1

nm+1

(
n

m + 1

)
(m + 1)! 1

m + 1

(
2m
m

)
+ O(

1
n)

→ 1
m + 1

(
2m
m

)
as n → ∞
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Wigner’s Semicircle Law

proof.
Next we consider the differ of TrXk

n
n and ETrXk

n
n . We first considerVarTrXk

n
n

VarTrXk
n

n =
1

nk+2

∑
EYiYj − EYiEYj

where Yi represents a sequence with length k. we named the set of vertex
of Yi,Yj as I, J. Now we consider how many paths such that
EYiYj − EYiEYj 6= 0.
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Wigner’s Semicircle Law

proof.
Now we consider how many different vertices in I ∪ J. SinceYi,Yj include
2k steps, if there is an edge has been traversed only once, then
EYiYj = EYiEYj = 0. Thus each edge has been traversed at least twice.
As a result, there are k edges at most.
If #{I ∪ J} ≥ k + 2, then the graph is not connected, but Yi,Yj are
connected respectively, so they are two independent paths. Then
EYiYj − EYiEYj = 0.
If #{I∪ J} = k+1, then the graph is a tree. We assume that if there exists
an edge traversed by both Yi,Yj. As a result, this edge only traversed in Yi
once, however, Yi is also a tree(since the connected subgraph of a tree is
also a tree), which means it has only one way from the beginning to that
edge and can get back to the beginning, which means that edge must be
traversed twice! Thus Yi,Yj are two independent paths as well.
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Wigner’s Semicircle Law

proof.
So we can only consider #{I ∪ J} ≤ k, and at this time

VarTrXk
n

n =
1

nk+2

∑
EYiYj − EYiEYj

∼ 1
nk+2

(
n
k

)
f(k)

∼ O(
1
n2 )

where f(k) represents the sum of each term after fixed vertices.
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Wigner’s Semicircle Law

proof.

Finally, we prove that TrXk
N

n
a.s.−−→ γk.By B-C lemma we have

TrXk
N

n
a.s.−−→ γk

⇔P
(∣∣∣∣TrXk

N
n − γk

∣∣∣∣ > ϵ i.o.
)

= 0 ∀ϵ > 0

⇐
∑

P
(∣∣∣∣TrXk

N
n − γk

∣∣∣∣ > ϵ

)
< ∞
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Wigner’s Semicircle Law

proof.
Infact, by Markov Inequality

∑
P
(∣∣∣∣TrXk

N
n − γk

∣∣∣∣ > ϵ

)
≤

∑
P
(∣∣∣∣TrXk

N
n − E

TrXk
N

n

∣∣∣∣ > ϵ/2
)
+ P

(∣∣∣∣ETrXk
N

n − γk

∣∣∣∣ > ϵ/2
)

≤ 4
ϵ2

∑
Var(TrXk

N
n ) + C

∼ 4
ϵ2

∑ 1
n2 + C

< ∞
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Marcenko-Pastur Law
Wishart Matrix

Introduction
Let (p(n))n≥1 be a sequence of positive integers such that
lim

n→∞
p(n)

n = α ≥ 1. Consider the np(n) matrix Xn whose entries are i.i.d. of
mean 0 and variance 1, and with the kth moment bounded by some
rk < ∞ not depending on n.
As before, we will actually study the normalized matrix Yn := XN√n . The
Marcenko-Pastur law is concerned with the distribution of the singular
values of Yn, which by definition are the eigenvalues of the n × n Wishart
matrix Wn = YnYT

n ∈ Rn×n .
As with the semicircle law, the limiting behaviour of these eigenvalues can
be understood by considering the empirical spectral distribution µn of a
Wishart matrix Wn as n → ∞.
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Marcenko-Pastur Law
Empirical Spectral Distribution

Definition
Given any n × n Wishart matrix Wn, we can form the empirical spectral
distribution

µWn =
1
n

n∑
i=1

δλi

where λi are the eigenvalues of the Wishart matrix.
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Marcenko-Pastur Law

Marcenko-Pastur Law

Let σ : B(R) → [0, 1] ,A 7→
∫

A

√
(λ+−x)(x−λ−)

2πx 1λ−≤x≤λ+dx, where
λ+ = (1 +

√
α)2, λ− = (1 −

√
α)2, then σ ∈ Pr(R).

we want to prove that a sequence of random ESDs µWn converge almost
surely to σ.

proof.
In oder to discuss the method of moment we only prove

1
nETrW k

n →
∫

xkdσ
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Marcenko-Pastur Law

proof.

1
nETrW k

n =
1

nk+1ETr
(
XnXT

n
) k

=
1

nk+1

∑
sequence of length k

E
(
XnXT

n
)

i1i2 . . .
(
XnXT

n
)

iki1

=
1

nk+1

∑
i1...ik;ji...jk

EXi1j1Xi2j1Xi2j2Xi3j2 . . .XikjkXi1jk

As before, we focus on EXi1j1Xi2j1Xi2j2Xi3j2 . . .XikjkXi1jk . We can think of
each such term as a connected bipartite graph on the sets of vertices
{i1, . . . , ik} and {j1, . . . , jk}, where the total number of edges (with
repetitions) is 2k.
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Marcenko-Pastur Law

proof.
Suppose ni and nj denote the number of distinct i vertices and j vertices,
respectively. Since each edge needs to be traversed at least twice, there
are at most k + 1 distinct vertices, so ni + nj ≤ k + 1.
We notice that if ni + nj < k + 1, such terms will equal to

1
nk+1

(
n

ni + nj

)
f(k) n→∞−−−→ 0

where f(k) represents different kinds of bipartite graphs after fixed vertices.
If ni + nj = k+ 1 there are k unique edges and the resulting graph is a tree.
Such terms will become the dominant ones in the sum in the limit n → ∞.
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Marcenko-Pastur Law

proof.
Now we focus on ni + nj = k + 1.
Notice that there are n(n − 1) . . . (n − ni + 1)p(p − 1) . . . (p − nj + 1)
corresponding choices for i and j. Because p ≈ nα for large n and we are
in the case ni + nj = k + 1, the number of choices is asymptotically equal
to nk+1αnj .
Let βk represents the number of type sequence of length 2k with weight
after dividing by nk+1.

βk =
∑

type sequence of length 2k
αnj

Thus we can decuce
1
nETrWk

n = βk
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Marcenko-Pastur Law

proof.
The goal is to establish a recurrence relation between the βk in order to
compute the general term.
We assume that we first go back to the beginning after the 2j steps. Then
each edge that is traversed in first 2j steps will be traversed twice, since
this bipartite graph is also a tree. Thus if we delete the first step and the
2jth step, we will have a sequence with length 2(j − 1). This sequence
represents the number of type sequences of length 2(j − 1) with weight,
which begin from {1, 2 . . . , p}. We named it γj−1. Then we have

βk =
k∑

j=1
γj−1βk−j
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Marcenko-Pastur Law

proof.
Similarly

γk =
k∑

j=1
βj−1γk−j

Also we have γ0 = α, β0 = 1(γ0, β0represents we only chose one points in
{1, . . . , p}, {1, . . . , n} respectively without walking)
Then we can deduce that

βk = γk

Thus

βk = (α− 1)βk−1 +
k∑

j=1
βj−1βk−j
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Marcenko-Pastur Law

proof.
In particular, if β̂(x) :=

∑∞
k=0 βkxk is the generating function for the βk,

the previous identity leads to the following equality for β̂:

β̂(x) = 1 + xβ̂(x)2 + (α− 1)xβ̂(x)

For convenience, we only see what happens when α = 1, by
Taylor-Expansion

β̂(x) = 1 + xβ̂(x)2

⇒β̂(x) = 1 −
√

1 − 4x
2x

⇒βk =
1
2(−1)

( 1
2

k+1
)

(k + 1)!(−4)k+1 =
1

2k + 1

(
2k
k

)
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Examples and Solutions

Yau 2021 Problem 4
Let Xn = Xij be an n × n random matrix whose entries are independent
and identically distributed random variables with the symmetric Bernoulli
distribution P{X = 0} = P{X = 1} = 1

2 . Let pn = P{det(Xn) is odd}.
Show that lim

n→∞
pn > 0.
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Examples and Solutions

Yau 2016 Problem 2
Let X be a N × N random matrix with i.i.d. random entries, and
P(X11 = 1) = P(X11 = −1) = 1/2 Define

‖X‖op = sup
v∈CN:∥⃗v∥2=1

‖Xv⃗‖2

Please show that for any fixed δ > 0,

lim
N→∞

P(‖X‖op ≥ N1/2+δ) = 0

Hint: ‖X‖2
op ≤ Tr |X|2
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The End
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