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Abstract

In recent years, partially observable functional data has gained significant at-
tention in practical applications and has become the focus of increasing interest in
the literature. In this thesis, we build upon the concept of data integration depth
for partially observable functions, as proposed by Elias et al. (2023) [4], and the
trimmed mean estimator method along with its consistency proof introduced by
Fraiman and Muniz (2001) [6] for completely observable functions. We introduce
the concept of trimmed mean specifically for partially observable functional data.
Additionally, we address several theoretical and practical issues, including a proof of
the strong consistency of the proposed trimmed mean, and we provide a simulation
study. The results demonstrate that our estimator outperforms the ordinary mean
in terms of accuracy and robustness when applied to partially observable functional
data.
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1 Introduction

1.1 Background and Literature Review

Over the past 80 years, functional data analysis (FDA) has emerged as one of the main
branches of modern statistics. Analyzing functional data directly is often more effective
and concise compared to traditional data-based approaches, particularly when dealing
with dynamic data streams or large datasets. To better understand the process of dynamic
data collection, Ramsay (1982) [15] highlighted that advanced modern data collection
systems can now capture a series of functional observations. Ramsay emphasized that this
data collection process should be conceptualized as dynamic rather than static, contrasting
with the static datasets traditionally studied. Consequently, relying on conventional data
analysis methods may result in information loss or biased model estimations.

From another perspective, when the volume of data is large, Ramsay and Silverman
(1997) [16] demonstrated that analyzing functional data is often more suitable than han-
dling large finite-dimensional vectors derived from discrete approximations of functions.
This is particularly relevant for computational reasons, as efficiently computing multivari-
ate depth in high-dimensional spaces is nearly infeasible. This underscores the necessity
of adapting traditional statistical methods to accommodate functional data. Hence, ex-
tending these methods is critical for preserving the richness and structure inherent in
functional datasets.

Another important traditional statistical concept is order statistics, which concerns
the properties of data rankings. This concept has broad applications, ranging from basic
measures like medians and quartiles to various robust estimation techniques. In the uni-
variate case, order statistics are straightforward, based on the ranking of real numbers,
and their applications are well-documented in the literature. For example, L-estimates,
defined as linear combinations of order statistics, are widely used as robust location es-
timators. These include specific cases such as the median (derived from a single point
in an odd sample) and the mean (using all points). Trimmed means, a particular type
of L-estimate, are calculated as the average of the central (1 − α)n observations, where
(0 ≤ α < 1) varies. This approach balances efficiency and robustness by utilizing more
data than the median while mitigating the influence of outliers. In higher dimensions, the
concept of order statistics becomes more complex. Definitions proposed by Tukey (1975)
[17] and Fraiman and Meloche (1999) [5] rely on various notions of data depth, which mea-

2



Bachelor’s Thesis of the University of Science and Technology of China

sures the ”centrality” of multivariate data points within a given dataset to extend the
concept of ranking in high dimensional case. Although these definitions are differ greatly
for multivariate data, they are very similar when applied to univariate data.

Extending the concept of infinite-dimensional spaces, particularly for functional data,
is both important and natural. Starting with the seminal work of Fraiman and Muniz
(2001) [6], various definitions of depth for functional data have been proposed. The theoret-
ical properties of these functional depths have been extensively studied (e.g., Nieto-Reyes
and Battey (2016) [13]). A central idea in functional depth lies in integrating pointwise
depths across the domain of the function. Functional depth has proven to be a powerful
tool for numerous applications, such as visualizing functional data (Hyndman and Shang
(2010) [7]), detecting functional outliers (Arribas-Gil and Romo (2014) [1]), and classifying
functional data (Li, Cuesta-Albertos, and Liu (2012) [11]).

However, in real-world scenarios, functional data are often incomplete due to issues
like missing recordings, equipment failures, or other practical constraints. Extending the
concept of depth to handle such incomplete functions is a challenging but fascinating
problem. Partially observed functional data are prevalent across various fields of research.
For instance, in medical studies, missing observations may arise from patients skipping
medical visits or equipment failing to record data (James, Hastie, and Sugar (2000) [8]).
Similarly, in electricity markets, supply functions are incomplete because suppliers and
buyers negotiate prices and quantities based on changing market conditions (Kneip and
Liebl (2020) [9]). As a result, the analysis of partially observed functional data has gained
significant attention in recent years.Mathematically, partially observed functional data
can be defined as follows: Consider random functions sampled on a compact set [a, b] to
R. In cases where the recorded data for these functions are available only on a compact
subset of [a, b], each functional observation becomes partially observable. This formulation
underpins the challenges and opportunities for analysis in such settings.

For partially observed functional data, Elias et al. (2023) [4] introduced a robust depth
function called Partially Observed Integrated Functional Depth (POIFD). This function
extends the toolkit for analyzing complex functional data settings, including sparse cases,
and facilitates the development of robust statistics. POIFD provides critical support for
other techniques in the context of partially observed functional data. Building on this
foundational work, we propose a natural α-trimmed mean concept for partially observed
functional data. Specifically, the α-trimmed mean is defined as the average of the most
central (i.e., deepest) 1 − α proportion of observations based on the integral depth of
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partially observed functions. Compared to the ordinary mean, our approach demonstrates
superior efficiency and robustness, particularly for incomplete or noisy data.

1.2 Organization of the Paper

In Chapter 2, we review the concept of functional data depth. In Chapter 3, we define the
partially observable functional α−trimmed mean based on the partially observable func-
tional depth and propose the strong consistency property of trimmed mean. In Chapter
4, we present the results of a simulation study that compares the performance of several
location estimators. All proofs, figures, and tables are included in the appendix, and the
corresponding code is available at GitHub.

2 Functional Data Depth

2.1 Data Depth

A data depth is a function to indicate how deep or ”centrality” of a data point within
a given data cloud or a given probability distribution. Although these definitions vary
significantly for data in high dimensions, they become quite similar when applied to data
in one dimension. We now briefly describe two of them.

Let X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) random vectors
in Rd, and the common distribution FX .

Tukey’s Depth. After given the set of n points Xn = {x1, . . . , xn}, which is an
observation of {X1, X2, . . . , Xn} in d-dimensional space, the sample version of Tukey’s
depth of a point x is the smallest fraction (or number) of points in any closed halfspace
that contains x.The Tukey’s depth at x is defined as

TDn(x; Xn) = inf
v∈Rd,∥v∥=1

1
n

n∑
i=1

1{vT (xi − x) ≥ 0},

and the population Tukey’s depth of x with regret to the common distribution FX is

TD(x; FX) = inf
v∈Rd,∥v∥=1

P (vT (X − x) ≥ 0).

In the univariate case, we assume n is large enough for us to approximate F with Fn,
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then we have

TD(x; FX) = min
{
F (x), 1 − F

(
x−
)}

and TDn(x; Xn) = min
{
Fn(x), 1 − Fn

(
x−
)}

.

Simplicial Depth. The simplicial depth of a point x in d-dimensional Euclidean
space, with respect to the set of n points Xn = {x1, . . . , xn}, which is an observation of
{X1, X2, . . . , Xn} in d-dimensional space, is the number of d-dimensional simplices (the
convex hulls of sets of d + 1 sample points) that contain x. The Tukey’s depth at x is
defined as

SDn(x; Xn) = 1(
n

d+1

)#{x ∈ S [x1, x2, . . . , xn]},

The population Simplicial depth at x is defined as

SD(x; FX) = P (x ∈ S [X1, X2, . . . , Xn]) ,

In the univariate case, we assume n is large enough for us to approximate F with Fn,
then we have

SD(x; FX) = 2F (x)
(
1 − F

(
x−
))

, and SDn(x; Xn) = 2Fn(x)
(
1 − Fn

(
x−
))

.

2.2 Integrated Functional Depth

Consider defining a depth of functional data in a finite-dimensional and univariate case.
Let P denote the set of all probability measures on (R, B(R)), where B(R) is the σ-algebra
on R.

Without loss of generality, we consider a functional data defined on the interval [0, 1].
Specifically, in what follows, X : [0, 1] → R is a stochastic process with continuous paths,
P is the probability distribution of X, and Pt is the marginal distribution of X(t).

Considering a function D : R× P → [0, 1] to be with some kind of depth. We assume
that this function satisfies properties D1 to D7 as proposed by Nagy et al. (2016)[12]. Using
this depth function D we can define a functional depth for functional data. Specifically,
we recall the definition of the Integrated Functional Depth (Claeskens et al., 2014[2]; Nagy
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et al., 2016[12]).

Definition 1. (Integrated Functional Depth (IFD)) Given a continuous function x :
[0, 1] → R, a univariate depth D, and a weight function w : [0, 1] → [0, ∞) satisfy-
ing

∫ 1
0 w(t)dt = 1, the Integrated Functional Depth of x with respect to P is defined as∫ 1

0 w(t)dt = 1,

IFDw(x, P ) =
∫ 1

0
D (x(t), Pt) w(t)dt.

2.3 Partially Observed Integrated Functional Depth (POIFD)

2.3.1 Basic Setting

Let X1, . . . , Xn be n independent realizations of X. We consider the scenario where the
realizations X1, . . . , Xn are only partially observed. To construct this setting, similarly to
Delaigle and Hall (2013)[3], we consider a random observation mechanism Q that generates
a compact set on [0, 1], which represents the domain over which the functional data are
observed. Specifically, we assume that the compact set generated by Q consists of a
finite collection of closed intervals with strictly positive Lebesgue measure. Let O be a
set generated by the mechanism Q, and let O1, . . . , On be independent realizations of O.
Then, for 1 ≤ i ≤ n, the functional data Xi are only observed on Oi.

We assume that the probability measure P and the mechanism Q are independent,
and that (X1, O1) , . . . , (Xn, On) are independent and identically distributed realizations
from P × Q. This assumption is known as Missing-Completely-at-Random (MCAR),
which is a standard assumption in the literature on partially observed functional data
(e.g., Kraus 2015[10]; Kneip and Liebl 2020[9]).

2.3.2 Population Form

Since X is only observed on the set O, we define its depth by restricting an integrated
functional depth to the set O. For t ∈ [0, 1], to achieve this, let Q(t) = P(O ∋ t) denote
the probability that the random set O covers the point t. Without loss of generality, we
assume that Q(t) > 0 for any t ∈ [0, 1]. Furthermore, we consider a positive bounded
continuous function ϕ defined on [0, 1]; such a function ϕ could be, for example, the
identity map on [0, 1]. We then define the following weight function, restricted to the
compact set O:
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wϕ(t | O) = ϕ(Q(t))∫
O ϕ(Q(t))dt

.

We now recall the definition of the Partially Observed Integrated Functional Depth
(POIFD) for any continuous function x : [0, 1] → R restricted to a compact set O ⊂ [0, 1]
(Elias et al. 2023[4]).

Definition 2. (Partially Observed Integrated Functional Depth (POIFD)) For (x, O), the
POIFD with respect to P × Q is defined as

POIFD((x, O), P × Q) =
∫

O
D (x(t), Pt) wϕ(t | O)dt,

where wϕ(t | O) is the weight function defined above.

It is easy to see that if the data are fully observed, i.e., if P(O ∋ t) = 1 for any
t ∈ [0, 1], then the proposed POIFD corresponds exactly to the IFD with the weight
function w(t) ≡ 1.

2.3.3 Sample Form

We now recall the sample version of POIFD for computation on finite samples. Let Pn

denote the empirical distribution obtained by assigning a weight of 1/n to each sample
curve X1, . . . , Xn. Similarly, let Qn denote the empirical distribution obtained by assigning
a weight of 1/n to each set O1, . . . , On. Define I(t) := {1 ≤ i ≤ n : t ∈ Oi} and qn(t) =
#I(t)

n
. Finally, let Pt,n represent the empirical distribution function of the univariate sample

{Xi(t), i ∈ I(t)}.
We define the sample version of POIFD using a plug-in approach(Elias et al. 2023[4]):

Definition 3. (Sample Version of POIFD)

POIFDn ((x, O), Pn × Qn) =
∫

O D (x(t), Pt,n) ϕ (qn(t)) dt∫
O ϕ (qn(t)) dt

.

In practical applications, we only need to obtain a discrete version of the functional
data Xi on a discrete evaluation grid {t1, . . . , tT }, where 0 = t1 < t2 < · · · < tT = 1
(often selected equidistantly for simplicity). Note that for many tℓ, ℓ = 1, . . . , T , such
evaluations may indeed be missing, which is consistent with the partially observed nature
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of the data considered in this work. We can then define the sample version of the POIFD
using the standard Riemann approximation.

Definition 4. (Sample Partially Observed Integrated Functional Depth (Sample POIFD))
Given partially observed functional data (X1, O1) , . . . , (Xn, On), evaluated on a common
grid {t1, . . . , tT }, where 0 = t1 < t2 < · · · < tT = 1, the sample version of the Partially
Observed Integrated Functional Depth is defined as You can complete the definition by
specifying the formula that represents the sample POIFD, using the given discrete evalu-
ation grid.

POIFDT ((x, O), Pn × Qn) =
∑

tℓ∈O
D (x (tℓ) , Ptℓ,n) ϕ (qn (tℓ))∑

tℓ∈O ϕ (qn (tℓ))
.

3 The Trimmed Mean for Partially Observed Func-
tional Data and Related Theorems

3.1 Definition

The trimmed mean for partially observed functions is defined as the mean of the n − [nα]
deepest observed values, where α is the ratio of trimming.

More precisely, for β > 0, we define the sample version of trimmed mean for partially
observed functional data as

µ̂n(t) =
∑n

i=1 1[β,+∞) (POIFDn (Xi)) 1Xi(t) is observedXi(t)∑n
i=1 1[β,+∞) (POIFDn (Xi)) 1Xi(t) is observed

, t ∈ [0, 1] ,

where β satisfies

1
n

n∑
i=1

1[β,+∞) (POIFDn (Xi)) ≈ 1 − α.

Here, 1A denotes the indicator function of the set A.
Similarly, we define the population version of the trimmed mean for partially observed

functions as

µ(t) =
E
[
1[β,+∞) (POIFD (X)) 1X(t) is observedX(t)

]
E
[
1[β,+∞) (POIFD (X)) 1X(t) is observed

] , t ∈ [0, 1] ,

8



Bachelor’s Thesis of the University of Science and Technology of China

We also define

µ̂(t) =
∑n

i=1 1[β,+∞) (POIFD (Xi)) 1Xi(t) is observedXi(t)∑n
i=1 1[β,+∞) (POIFD (Xi)) 1Xi(t) is observed

, t ∈ [0, 1] ,

for our proof process.

3.2 Strong Consistency Results

Next, we will demonstrate the strong consistency of the empirical functional depth POIFDn

with respect to its population counterpart POIFD over an appropriate function space,
and derive the strong consistency of the trimmed mean estimator. This part is an exten-
sion of trimmed mean from functional data to partially observed functional data based
on the Fraiman and Muniz (2001) [6]’s work. We recall the following two assumptions
setting:

H1. For a sufficiently large constant A, let

Lip[0, 1] = {x : [0, 1] → R, x is a Lipschitz function with a Lipschitz constant less than or equal to A},

which is the function space in which the random process X1(t) takes its values.
H2. There exists a constant c > 0 such that

E (λ ({t : X1(t) ∈ [u(t), u(t) + cϵ]})) < ϵ/2.

Here, λ represents the Lebesgue measure on R, and u ∈ Lip[0, 1].
We now present the strong consistency results for the trimmed mean of partially

observed functions.

3.2.1 The Case of a Fixed Weight Function

We first consider a given weight function ω(t), where supt∈[0,1] |ω(t)| ≤ C for some constant
C. Under these conditions, we can prove the following theorem:

Theorem 1. Under the conditions H1 and H2, if the weight function is ω(t) and supt∈[0,1] |ω(t)| ≤
C for some constant C, let

Kn(x) =
∫ 1

0
Fn,t(x(t))ω(t)dt, and K(x) =

∫ 1

0
Ft(x(t))ω(t)dt.
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where Fn,t(x(t)) and Ft(x(t)) are the empirical and population distribution functions, re-
spectively. We have

sup
x∈Lip[0,1]

|Kn(x) − K(x)| a.s.−−→ 0.

and
sup

x∈Lip[0,1]
|POIFDn(x) − POIFD(x)| a.s.−−→ 0.

3.2.2 The Case of Weighted Functions for Partially Observed Functions

Next, we consider the weighted functions used in this paper, with the corresponding
population and empirical versions defined as:

wϕ(t | O) = ϕ(Q(t))∫
O ϕ(Q(t))dt

and wϕ,n(t | O) = ϕ(qn(t))∫
O ϕ(qn(t))dt

.

Theorem 2. Under the conditions H1 and H2, let

Kn(x) =
∫

O
Fn,t(x(t))wϕ,n(t | O)dt, and K(x) =

∫
O

Ft(x(t))wϕ(t | O)dt.

where Fn,t(x(t)) and Ft(x(t)) are the empirical and population distribution functions, re-
spectively. Then we have

sup
x∈Lip[0,1]

|Kn(x) − K(x)| a.s.−−→ 0,

and
sup

x∈Lip[0,1]
|POIFDn(x) − POIFD(x)| a.s.−−→ 0,

where POIFDn(x) and POIFD(x) are the sample and population partially observed in-
tegrated functional depths, respectively.

Theorem 3. If the stochastic process X1(t) takes values in an arbitrary space E[0, 1] := E,
where

sup
x∈E

|Kn(x) − K(x)| a.s.−−→ 0,

Then
µ̂n → µ a.s.,
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where µ̂n is the empirical and population trimmed means, respectively.

In particular, under the assumptions H1 and H2, we have µ̂n(t) → µ(t) almost surely,
which proves the strong consistency of the trimmed mean for partially observed functional
data. All the proofs can be found in the appendix, which are technical.

4 Simulation Experiment

4.1 Model Setup

In this section, we follow the simulation data assumptions from Fraiman and Muniz
(2001)[6], and compare the trimmed mean estimates with the conventional mean under
three contamination models.

The basic model (Model M1) consists of p functions, satisfying the following condition:

Xi(t) = g(t) + ei(t) 1 ≤ i ≤ p,

where ei(t) is a Gaussian stochastic process with zero mean, and the covariance function
is given by

E (ei(t)ei(s)) =
(1

2

)|t−s|p
,

Function g(t) = 4t corresponds to the unpolluted model.
Next, we consider two types of contamination in the basic model: complete con-

tamination and partial contamination (on the trajectory), while also accounting for both
symmetric and asymmetric contamination.

In the case of symmetric complete contamination, model M2 is given by the following
formula:

Y full
i (t) = Xi(t) + ϵiσiM 1 ≤ i ≤ p,

where Yi(t) is the partially observable functional data generated from Y full
i (t). Here, ϵi

and σi are independent sequences of random variables. ϵi takes the value 1 with probability
q, and 0 with probability (1 − q), determining the proportion of contamination. It takes
the values 1 and -1 with probability 1/2 each, determining the direction of contamination.
M is the magnitude of the contamination (a constant).

11



Bachelor’s Thesis of the University of Science and Technology of China

In the case of asymmetric complete contamination, model M3 is defined by the fol-
lowing formula:

Yi(t) = Xi(t) + ϵiM 1 ≤ i ≤ p,

where ϵi and M are as defined in model M2.
For partial contamination, we consider model M4 defined as follows:

Yi(t) = Xi(t) + ϵiσiM for t ≥ Ti 1 ≤ i ≤ p

and

Yi(t) = Xi(t) for t < Ti,

where Ti is randomly chosen according to a uniform distribution on (0, 1).
We consider the following scenarios: for p = 50 and p = 80 curves, with an estimated

number of selected grid points len = 200, q = 0.1, M = 5 and M = 25, and α = 0.2
and 0.3, with observation proportions of 0.5 and 0.9. Each scenario was repeated N = 10
times.

For constructing the partially observable functional data over random intervals: each
function is observed over m disjoint intervals, distributed along [0, 1], with a total expected
observation proportion p. For this, for each function, a random sample of size ⌊(m−p)/p⌋ is
generated from a uniform distribution on [0, 1]. We then consider the intervals [u(i−1), u(i)],
where u(i) is the i-th order statistic of the sample. Thus, the function is observed over m

randomly chosen disjoint intervals. Note that the selection is random, but the m intervals
are guaranteed to be disjoint.

For simplicity in the simulation experiments, a center of 0.5 can be chosen. Specifically,
each functional data point is observable over a domain from a randomly generated starting
point to a randomly generated endpoint. The starting point is sampled from a uniform
distribution on [1/2 − p, 1/2) if p ≤ 1/2, or from a uniform distribution on [0, 1 − p) if
p > 1/2. For the endpoint, if p ≤ 1/2, it is sampled from a uniform distribution on
(1/2, 1/2 + p], or if p > 1/2, from a uniform distribution on (p, 1]. This results in a total
(expected) observation proportion p.

As an example, see the Figure 1. The green line represents the trimmed mean, the
yellow line represents the mean before trimming, and the blue lines represent the functions
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that were trimmed. We observe that all contamination can be identified and removed.
In this figure, we use a sine function as the base setting, which slightly differs from our
model setting.

(a) Partially observable functions

Figure 1: Illustration of partially observable functions.

4.2 Experimental Data and Analysis

In each case, for p = 50 and p = 80 curves, with an estimated number of selected grid
points len = 200, q = 0.1, M = 5 and M = 25, and α = 0.2 and 0.3, with observation
proportions of 0.5 and 0.9, each scenario was repeated N = 10 times.

Figures 2, 3, and 4 (in the appendix) show the partially observable data generated
under the same P , where P = 50, for the three types of contamination. Each figure has
an upper panel showing the partially observed functions and a lower panel showing the
proportion of observable functions qn at each point. The left side shows the complete
data, while the right side shows the data after trimming with an observation proportion
α = 0.3. It can be seen that contamination data clearly lies away from the center of
the original data on the left side of each figure. Meanwhile, on the right side of each
figure, it is evident that the contamination values (i.e., the functions with the weakest
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centralization) are effectively trimmed off.
For each model, we consider mean and trimmed mean estimates.

µ̂n(t) =
∑n

i=1 1Xi(t)is observedXi∑n
i=1 1Xi(t)is observed

,

µ̂n,α(t) =
∑n

i=1 1[β,+∞) (POIFDn (Xi)) 1Xi(t)is observedXi∑n
i=1 1[β,+∞) (POIFDn (Xi)) 1Xi(t)is observed

,

The trimming proportions α = 0.2 and 0.3 were selected.
For each of the 10 experiments, we evaluated the estimates at I = len equidistant

points on [0, 1], and computed the integral error for each experiment:

EI(j) = 1
I

I∑
k=1

[
f

(
k

I

)
− g

(
k

I

)]2

,

where f represents either µ̂n or µ̂n,α.
In the table, we report the average integral error of each estimate:

E = 1
N

N∑
j=1

EI(j)

and its standard deviation:

s =
 1

N

N∑
j=1

(EI(j) − E)2

1/2

.

We also report a robustness measure for evaluating estimator performance:

M = median(EI(j), j = 1, . . . N).

We then averaged the error across the 10 experiments to produce the results in Table 1,
Table 2, Table 3, and Table 4, which are shown in the appendix. All statistical results with
the suffix ”trim” refer to the trimmed values. It is evident that, in almost every setting,
the trimmed mean proposed for partially observable functions significantly outperforms
the ordinary mean in terms of average integral error, standard deviation, and robustness.
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A Proof of Strong Consistency Results

A.1 Proof of Theorem 1

Proof: We consider a slight modification of the proof of Theorem 3.1 in Fraiman and
Muniz (2001) [6]. Firstly we consider Y (t) is also a realization of X. Thus Y (t) still has
the same distribution F and marginal distribution Ft. Then by Fubini theorem, we have

K(x) =
∫ 1

0
Ft(x(t))ω(t)dt

=
∫ 1

0
P (Y (t) ≤ x(t))ω(t)dt

=
∫ 1

0

∫
Ω

1(−∞,x(t)](Y (t))ω(t)dPdt

=
∫

Ω

∫ 1

0
1(−∞,x(t)](Y (t))ω(t)dtdP

:=
∫

Ω
gxdP

:= Pgx,

where gx : L1([0, 1],R) → R, z(t) 7→
∫ 1

0 1(−∞,x(t)](z(t))ω(t)dt, and Pf is defined as
Pf =

∫
fdP .

We define F := {gx; x ∈ Lip[0, 1]}, which with envelope F ≡ C trivially. By the
Theorem in Pollard (1984)[14](Theorem 24 pag. 25), if we have log N1(ϵ, Pn, F) = oP (n),
where log N1(ϵ, Pn, F) is the family’s entropy of F (Definition also can be found in Pollard
(1984)[14] 23 pag. 25). Then we can prove

sup
x∈Lip[0,1]

|Pngx − Pgx| a.s.−−→ 0,

which is
sup

x∈Lip[0,1]
|Kn(x) − K(x)| a.s.−−→ 0.

In order to estimate N1(ϵ, Pn, F), we considering for x, how to find x′ to construct finite
functions gx′ , such that for all gx, we can always find a gx′ , which make ∥gx − gx′∥L1(Pn)

to be small enough.
More precisely, we define y(t) = min{x(t), x′(t)} and z(t) = max{x(t), x′(t)}, then
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notice that

∥gx − gx′∥L1(Pn) = 1
n

n∑
i=1

|gx (Xi) − gx′ (Xi)|

= 1
n

n∑
i=1

∣∣∣∣∫ 1

0
1(−∞,x(t)] (Xi(t)) w(t) dt −

∫ 1

0
1(−∞,x′(t)] (Xi(t)) w(t) dt

∣∣∣∣
= 1

n

n∑
i=1

∫ 1

0
1[y(t),z(t)] (Xi(t)) w(t) dt

≤ C
1
n

n∑
i=1

λ {t : Xi(t) ∈ [y(t), z(t)]} .

Note that if ω is dependent on n, as long as all the ωn(t) have a common bound C,
the derivation remains valid, which will be used in the proof of Theorem 2.

The remaining derivation is entirely consistent with Theorem 3.1 (pag. 11) of Fraiman
and Muniz (2001) [6], in their Theorem 3.1 it has proven the situation without the constant
C, the difference, 1

n

∑n
i=1 λ {t : Xi(t) ∈ [y(t), z(t)]}, can be as small as we want, so that we

can construct the the finite functions, then bounded the N1(ϵ, Pn, F). A constant is not
effect anything.

A.2 Proof of Theorem 2

Lemma 1. If Xn
a.s.−−→ X and Yn

a.s.−−→ Y , then Xn

Yn

a.s.−−→ X
Y

.

Proof: Let f : S ⊂ R2 → R be a continuous function, where S is the domain of f .
Assume that the random variables {(Xn, Yn), (X, Y )} take values in S and that Xn

a.s.−−→ X

and Yn
a.s.−−→ Y Then f(Xn, Yn) a.s.−−→ f(X, Y ).

To prove this assertion, let N = {Xn ↛ X} and M = {Yn ↛ Y }. Note that
P (N ∪ M) = 0. By the assumption of continuity, on (N ∪ M)c, we have f(Xn, Yn) →
f(X, Y ), and P ((N ∪M)c) = 1. Therefore, when Y takes non-zero values, Lemma 1 holds.

Lemma 2. (Egoroff’s Theorem) Let (X, a, m) be a finite measure space, i.e., m(E) < ∞,
and let {fn}, f be measurable functions that are almost everywhere real-valued. If fn(x) →
f(x) a.e. for all x ∈ X, then for any given δ > 0, there exists a measurable subset Eδ

such that m(Eδ) < δ, and fn → f uniformly on X \ Eδ.

Lemma 3. If the real-valued functions fn(t) → f(t) a.e. on [0, 1] and both fn and f are
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bounded, then ∫ 1

0
|fn(t) − f(t)|dt → 0.

Proof: By Egoroff’s Theorem. For any given δ, ϵ > 0, there exists a measurable
subset Eδ such that m(Eδ) < δ, and fn → f uniformly on [0, 1] \ Eδ. This implies that
there exists a sufficiently large n such that supt∈[0,1]\Eδ

|fn(t) − f(t)| ≤ ϵ.

∫ 1

0
|fn(t) − f(t)|dt =

∫
Eδ

|fn(t) − f(t)|dt +
∫

[0,1]\Eδ

|fn(t) − f(t)|dt

≤ m(Eδ)C + sup
t∈[0,1]

|fn(t) − f(t)|

≤ δC + ϵ → 0,

where C is the bound of both fn and f . This completes the proof.

Lemma 4. Let f, fn : Ω×[0, 1] → R. If both fn and f are bounded, and if for all t ∈ [0, 1],
we have fn(t) → f(t) a.s., then as n → ∞, we have

∫ 1

0
|fn(t) − f(t)|dt

a.s.−−→ 0.

Proof: By Lemma 3, we know that Lemma 4 is equivalent to ∃Ω0 such that P (Ω0) = 1
and for all ω ∈ Ω0, fn,ω(t) a.e.−−→ fω(t) as n tends to infinity. Note that we usefn,ω(t) =
fn(ω, t) for simplicity of writing.

We will prove by contradiction. Consider the converse statement: ∀Ω̃ with P (Ω̃) = 1,
there exists ω0 ∈ Ω̃ such that fn,ω0 ↛ fω0 as n tends to infinity, almost everywhere.

This is equivalent to stating that ∃Iω0 with m(Iω0) > 0 such that for all t ∈ Iω0 ,
fn,ω0 ↛ fω0 .

Let
A ⊂ Ω

be defined as
A = {ω0 | ∃Iω0 , m(Iω0) > 0, ∀t ∈ Iω0 , fn,ω0 ↛ fω0}.

Then for any Ω̃ with P (Ω̃) = 1, we have Ω̃∩A ̸= ∅, which means P (A) > 0. Otherwise
taking Ω̃ = Ac, as P (Ω̃) = P (Ac) = 1 and Ω̃ ∩ A = Ac ∩ A = ∅, leading to a contradiction.
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Define
An = {ω0 | ∃Iω0 , m(Iω0) ≥ 1

n
, ∀t ∈ Iω0 , fn,ω0 ↛ fω0}.

Thus, we have A = ⋃∞
n=1 An. Since P (A) > 0, there exists n0 such that P (An0) > 0.

Let
Ã = {(ω, t) | ω ∈ A, t ∈ Iω}.

In particular, let Ãn0 = {(ω, t) | ω ∈ An0 , t ∈ Iω}.
We now show that P × m(Ã) > 0. In fact,

P × m(Ãn0) =
∫

1Ãn0
(ω, t) dm dP

=
∫

An0

dP
∫ 1

0
1Ãn0

(ω, t) dm

≥ 1
n0

∫
An0

dP

> 0.

Since Ãn0 ⊂ Ã, it follows that P × m(Ã) > 0. This means that there is a positive
measure set where fn(ω, t) ↛ f(ω, t).

However, we have ∀t, fn(t) → f(t) almost surely. This implies ∀t, ∃Ωt with P (Ωt) = 1
such that fn(ω, t) → f(ω, t). Thus,

P × m({(ω, t) | ω ∈ Ωt, t ∈ [0, 1]}) =
∫ 1

0
dm

∫
Ωt

dP = 1,

which implies P × m({(ω, t) | fn(ω, t) ↛ f(ω, t)}) = 0. This is a contradiction!

Lemma 5. If Xn → X a.s. and f is a continuous function, then f(Xn) → f(X) a.s.

Proof: By the continuity of f , for all ω, if Xn(ω) → X(ω), then f(Xn(ω)) →
f(X(ω)). Since Xn → X a.s., i.e., convergence occurs on a set of probability 1, it follows
that f(Xn) → f(X) a.s.

We now proceed with the formal proof of Theorem 2.
Proof: By definition,

Kn(x) =
∫

O
Fn,t(x(t))wϕ,n(t | O) dt and K(x) =

∫
O

Ft(x(t))wϕ(t | O) dt.
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Then we consider

|Kn(x) − K(x)|

=
∣∣∣∣∫

O
[Fn,t(x(t))wϕ,n(t | O) − Ft(x(t))wϕ(t | O)] dt

∣∣∣∣
=
∣∣∣∣∫

O
[Fn,t(x(t)) − Ft(x(t))] wϕ,n(t | O) dt +

∫
O

Ft(x(t)) [wϕ,n(t | O) − wϕ(t | O)] dt

∣∣∣∣
≤
∣∣∣∣∫

O
[Fn,t(x(t)) − Ft(x(t))] wϕ,n(t | O) dt

∣∣∣∣+ ∣∣∣∣∫
O

Ft(x(t)) [wϕ,n(t | O) − wϕ(t | O)] dt
∣∣∣∣ .

(A.1)

For the first part of A.1, we claim that 0 ≤ wϕ,n(t | O) ≤ C, where C is a constant,
for all n and t. Bigger than 0 is by definition, we only need to prove wϕ,n(t | O) is bounded
and the bound is independent with n and t.

Note that qn(t) ∈ (0, 1] and by definition of ϕ (continuous, bounded and positive), we
can assume ϕ((0, 1]) ∈ (c, C] , ∀t ∈ [0, 1], where c is bigger than 0.Thus wϕ,n(t | O) =

ϕ(qn(t))∫
O ϕ(qn(t)) dt

≤ C
cm(O) := C, where C is independent with n and t, and WLOG we assume

m(O) > 0. Let

w(t) =

wϕ,n(t | O) if t ∈ O

0 otherwise

Then we use this w(t) in Theorem 1, we can see clearly that C = 1. As a result we
have

sup
x∈Lip[0,1]

∣∣∣∣∫
O

[Fn,t(x(t)) − Ft(x(t))] wϕ,n(t | O) dt
∣∣∣∣ a.s.−−→ 0

For the second part of A.1, we first consider∣∣∣∣∫
O

[wϕ(t | O) − wϕ,n(t | O)] dt

∣∣∣∣ .
By definition, qn(t) = #I(t)

n
, where I(t) := {1 ≤ i ≤ n : t ∈ Oi} and Q(t) = P(O ∋ t).

Thus, by the Strong Law of Large Numbers, we have

qn(t) = #I(t)
n

=
∑n

i=1 1{t∈Oi}

n
a.s.−−→ E[1{t∈Oi}] = P(O ∋ t) = Q(t)

That means, as n → ∞, by Lemma 4, and considering O ⊂ [0, 1], we have
∫

O |qn(t) −
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Q(t)| ≤
∫ 1

0 |qn(t) − Q(t)|, finally we get∫
O

|qn(t) − Q(t)| dt
a.s.−−→ 0.

Now we can see
∫

O qn(t) dt
a.s.−−→

∫
O Q(t) dt, since |

∫
O qn(t) − Q(t) dt| ≤

∫
O |qn(t) −

Q(t)| dt.
Noting that the

∫
O qn(t),

∫
O Q(t) is always positive by definition. And now we have

qn(t) a.s.−−→ Q(t) and
∫

O qn(t) dt
a.s.−−→

∫
O Q(t) dt. By Lemma 1, we get wn(t | O) =

qn(t)∫
O qn(t) dt

a.s.−−→ w(t | O) = Q(t)∫
O Q(t) dt

. Noting that ϕ is a bounded continuous function, for ϕ

not being the identity function, by Lemma 5, we have ϕ(qn(t)) a.s.−−→ ϕ(Q(t)). Then replace
qn and Q with ϕ(qn) and ϕ(Q) respectively, we can get

∫
O ϕ(qn(t)) dt

a.s.−−→
∫

O ϕ(Q(t)) dt

following the same argument, we get

wϕ,n(t | O) = ϕ(qn(t))∫
O ϕ(qn(t)) dt

a.s.−−→ wϕ(t | O) = ϕ(Q(t))∫
O ϕ(Q(t)) dt

.

Furthermore, replacing qn and Q with wϕ,n and wϕ, by lemma 4, we can similarly
obtain ∫

O
|wϕ(t | O) − wϕ,n(t | O)| dt

a.s.−−→ 0.

Considering that Ft(x(t)) is bounded by 1, the second part of A.1, i.e.,∣∣∣∣∫
O

Ft(x(t)) (wϕ(t | O) − wϕ,n(t | O)) dt
∣∣∣∣ ≤

∫
O

|Ft(x(t)) (wϕ(t | O) − wϕ,n(t | O))| dt

≤
∫

O
|(wϕ(t | O) − wϕ,n(t | O))| dt

a.s.−−→ 0

and this convergence is independent with x. Finally, we obtain

sup
x∈Lip[0,1]

|Kn(x) − K(x)| a.s.−−→ 0.

Thus,
sup

x∈Lip[0,1]
|POIFDn(x) − POIFD(x)| a.s.−−→ 0.
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A.3 Proof of Theorem 3

Proof: We consider a slight modification of the proof of Theorem 3.2 in Fraiman and
Muniz (2001) [6]. We define ρ̂n,h and ρn,h as follows:

ρ̂n,h(t) = 1
n

n∑
i=1

1[β,+∞) (POIFDn (Xi)) 1Xi(t) observableh (Xi(t)) ,

ρn,h(t) = 1
n

n∑
i=1

1[β,+∞) (POIFD (Xi)) 1Xi(t) observableh (Xi(t)) .

When h(t) = t, ρ̂n,h is the numerator of µ̂n, and when h(t) = 1, then ρ̂n,h is the
denominator of µ̂n. The same holds for ρn,h and µn.

Since by the Strong Law of Large Numbers,

ρn,h
a.s.−−→ E

[
1[β,+∞) (POIFD (X)) 1X(t) observableh (X(t))

]
Thus by Lemma 1, we have µ̂

a.s.−−→ µ. Then to show µ̂n
a.s.−−→ µ, it suffices to show

µ̂n
a.s.−−→ µ̂. Also by Lemma 1, it suffices to show that

|ρ̂n,h − ρn,h| a.s.−−→ 0.

We define
Sn := sup

x∈Lip[0,1]
|POIFDn(x) − POIFD(x)|

From Theorem 2, we know that Sn
a.s.−−→ 0. For any δ > 0,
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|ρ̂n,h − ρn,h|

=
∣∣∣∣∣ 1n

n∑
i=1

1[β,+∞)((POIFDn (Xi)) − (POIFD (Xi)))1Xi(t) observableh (Xi(t))
∣∣∣∣∣

= 1
n

n∑
i=1

∣∣∣1[β,+∞)((POIFDn (Xi)) − (POIFD (Xi)))
∣∣∣ ∣∣∣1Xi(t) observable

∣∣∣ |h (Xi(t))|

≤ 1
n

n∑
i=1

|h (Xi)|
∣∣∣1Xi(t) is observed

∣∣∣ ∣∣∣1[β,+∞) (POIFD (Xi) + δ) − 1[β,+∞) (POIFD (Xi) − δ)
∣∣∣1{Sn≤δ}

+ 1
n

n∑
i=1

|h (Xi)|
∣∣∣1Xi(t) is observed

∣∣∣ ∣∣∣1[β,+∞) (POIFD (Xi) + Sn) − 1[β,+∞) (POIFD (Xi) − Sn)
∣∣∣1{Sn≥δ}

≤ 1
n

n∑
i=1

|h (Xi)|
∣∣∣1[β,+∞) (POIFD (Xi) + δ) − 1[β,+∞) (POIFD (Xi) − δ)

∣∣∣1{Sn≤δ}

+ 1
n

n∑
i=1

|h (Xi)|
∣∣∣1[β,+∞) (POIFD (Xi) + Sn) − 1[β,+∞) (POIFD (Xi) − Sn)

∣∣∣1{Sn≥δ}

≤ 1
n

n∑
i=1

|h (Xi)|
∣∣∣1[β,+∞) (POIFD (Xi) + δ) − 1[β,+∞) (POIFD (Xi) − δ)

∣∣∣1{Sn≤δ}

+ 1
n

n∑
i=1

|h (Xi)| 1{Sn≥δ}

a.s.−−→ E
[
|h (X)|

∣∣∣1[β,+∞) (POIFD (X) + δ) − 1[β,+∞) (POIFD (X) − δ)
∣∣∣] By SLLN, as n → ∞.

Since E [h(X)] < ∞, and indicator function is bounded, by Dominated Convergence Theorem,
a.s.−−→ 0 as δ → 0.

Up to this point, we have completed all the proofs in the theory section.
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(a) Partially observable functions (b) Trimming results

Figure 2: Symmetric complete contamination model

B Figures and Tables

Table 1: α = 0.2, observation proportion is 0.5
len p q M alpha pollution type observability E E trim sd squared differences sd squared differences trim M M trim

200.00 50.00 0.10 25.00 0.20 symmetric 0.50 7.14 0.51 7.93 1.34 3.70 0.08
200.00 50.00 0.10 25.00 0.20 asymmetric 0.50 9.59 0.08 4.91 0.02 8.85 0.07
200.00 50.00 0.10 25.00 0.20 partial 0.50 3.01 0.66 6.34 1.73 0.98 0.09
200.00 50.00 0.10 5.00 0.20 symmetric 0.50 0.24 0.09 0.15 0.04 0.16 0.08
200.00 50.00 0.10 5.00 0.20 asymmetric 0.50 0.43 0.10 0.26 0.04 0.42 0.08
200.00 50.00 0.10 5.00 0.20 partial 0.50 0.16 0.09 0.10 0.04 0.12 0.07
200.00 80.00 0.10 25.00 0.20 symmetric 0.50 2.03 0.05 1.57 0.01 1.47 0.06
200.00 80.00 0.10 25.00 0.20 asymmetric 0.50 8.26 0.06 6.38 0.02 6.63 0.06
200.00 80.00 0.10 25.00 0.20 partial 0.50 1.01 0.29 0.75 0.40 0.89 0.05
200.00 80.00 0.10 5.00 0.20 symmetric 0.50 0.12 0.05 0.07 0.01 0.10 0.05
200.00 80.00 0.10 5.00 0.20 asymmetric 0.50 0.42 0.06 0.27 0.02 0.36 0.06
200.00 80.00 0.10 5.00 0.20 partial 0.50 0.09 0.08 0.04 0.05 0.08 0.07
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(a) Partially observable functions (b) Trimming results

Figure 3: Asymmetric complete contamination model

(a) Partially observable functions (b) Trimming results

Figure 4: Partial contamination model
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Table 2: α = 0.3, observation proportion is 0.5
len p q M alpha pollution type observability E E trim sd squared differences sd squared differences trim M M trim

200.00 50.00 0.10 25.00 0.30 symmetric 0.50 2.81 0.08 2.00 0.01 1.83 0.08
200.00 50.00 0.10 25.00 0.30 asymmetric 0.50 8.10 0.10 8.23 0.03 4.57 0.09
200.00 50.00 0.10 25.00 0.30 partial 0.50 2.33 1.04 1.21 1.94 2.08 0.26
200.00 50.00 0.10 5.00 0.30 symmetric 0.50 0.33 0.09 0.30 0.01 0.23 0.09
200.00 50.00 0.10 5.00 0.30 asymmetric 0.50 0.43 0.10 0.17 0.04 0.44 0.09
200.00 50.00 0.10 5.00 0.30 partial 0.50 0.11 0.09 0.06 0.02 0.11 0.09
200.00 80.00 0.10 25.00 0.30 symmetric 0.50 2.12 0.07 1.55 0.03 1.83 0.06
200.00 80.00 0.10 25.00 0.30 asymmetric 0.50 8.26 0.07 3.55 0.02 7.86 0.06
200.00 80.00 0.10 25.00 0.30 partial 0.50 1.70 0.18 1.73 0.18 0.92 0.08
200.00 80.00 0.10 5.00 0.30 symmetric 0.50 0.15 0.08 0.07 0.04 0.15 0.07
200.00 80.00 0.10 5.00 0.30 asymmetric 0.50 0.42 0.06 0.26 0.02 0.30 0.06
200.00 80.00 0.10 5.00 0.30 partial 0.50 0.07 0.06 0.03 0.01 0.07 0.05

Table 3: α = 0.2, observation proportion is 0.9
len p q M alpha pollution type observability E E trim sd squared differences sd squared differences trim M M trim

200.00 50.00 0.10 25.00 0.20 symmetric 0.90 2.36 0.03 2.25 0.01 1.51 0.03
200.00 50.00 0.10 25.00 0.20 asymmetric 0.90 14.07 0.08 9.58 0.13 13.53 0.04
200.00 50.00 0.10 25.00 0.20 partial 0.90 1.07 0.11 0.68 0.17 0.98 0.03
200.00 50.00 0.10 5.00 0.20 symmetric 0.90 0.07 0.03 0.03 0.01 0.07 0.03
200.00 50.00 0.10 5.00 0.20 asymmetric 0.90 0.35 0.03 0.33 0.01 0.19 0.03
200.00 50.00 0.10 5.00 0.20 partial 0.90 0.03 0.04 0.01 0.01 0.03 0.04
200.00 80.00 0.10 25.00 0.20 symmetric 0.90 1.53 0.02 1.66 0.00 0.74 0.02
200.00 80.00 0.10 25.00 0.20 asymmetric 0.90 5.33 0.02 2.95 0.00 4.94 0.02
200.00 80.00 0.10 25.00 0.20 partial 0.90 0.46 0.04 0.63 0.05 0.18 0.02
200.00 80.00 0.10 5.00 0.20 symmetric 0.90 0.06 0.02 0.04 0.00 0.04 0.02
200.00 80.00 0.10 5.00 0.20 asymmetric 0.90 0.29 0.02 0.21 0.00 0.20 0.02
200.00 80.00 0.10 5.00 0.20 partial 0.90 0.03 0.02 0.03 0.00 0.02 0.02

Table 4: α = 0.3, observation proportion is 0.9
len p q M alpha pollution type observability E E trim sd squared differences sd squared differences trim M M trim

200.00 50.00 0.10 25.00 0.30 symmetric 0.90 1.24 0.04 0.98 0.01 0.87 0.04
200.00 50.00 0.10 25.00 0.30 asymmetric 0.90 7.75 0.04 5.43 0.01 7.73 0.04
200.00 50.00 0.10 25.00 0.30 partial 0.90 0.58 0.04 0.73 0.02 0.40 0.04
200.00 50.00 0.10 5.00 0.30 symmetric 0.90 0.11 0.05 0.10 0.01 0.07 0.05
200.00 50.00 0.10 5.00 0.30 asymmetric 0.90 0.53 0.04 0.21 0.01 0.45 0.04
200.00 50.00 0.10 5.00 0.30 partial 0.90 0.06 0.04 0.05 0.00 0.04 0.04
200.00 80.00 0.10 25.00 0.30 symmetric 0.90 1.44 0.02 1.23 0.00 1.03 0.03
200.00 80.00 0.10 25.00 0.30 asymmetric 0.90 8.09 0.02 3.76 0.00 7.34 0.02
200.00 80.00 0.10 25.00 0.30 partial 0.90 0.37 0.04 0.54 0.06 0.16 0.02
200.00 80.00 0.10 5.00 0.30 symmetric 0.90 0.06 0.02 0.04 0.01 0.06 0.02
200.00 80.00 0.10 5.00 0.30 asymmetric 0.90 0.32 0.03 0.27 0.00 0.23 0.03
200.00 80.00 0.10 5.00 0.30 partial 0.90 0.03 0.02 0.03 0.01 0.03 0.02
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