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Abstract

Predicting PM2.5 is crucial for environmental management. In recent years,
with the rapid development of machine learning and deep learning, numerous ma-
chine learning methods have been applied to time series forecasting, such as RNN,
LSTM[3], and GRU[1]. However, different models have their own advantages and
disadvantages when handling various data types. Recently, some novel architec-
tures have begun integrating different types of neural networks to leverage their
respective strengths. The Inception module, a typical example of this approach,
was first proposed by GoogLeNet[4]. Inspired by the Inception algorithm, this es-
say introduces an LSTM-GRU hybrid network architecture for PM2.5 forecasting,
combining RNN and LSTM. This architecture demonstrates significant performance
improvement compared to models using only LSTM or GRU. Experiments were con-
ducted based on meteorological data from Chengdu between 2013 and 2015, with
the corresponding code and test results provided.

1 Introduction

PM2.5 pollution has become a major global environmental concern. PM2.5 poses a threat
to human health and negatively impacts the ecosystem. Therefore, accurately predicting
PM2.5 concentration is essential for formulating effective environmental governance poli-
cies and taking timely measures. However, PM2.5 concentration is influenced by various
complex factors, including meteorological conditions, emission sources, and regional dif-
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fusion, exhibiting significant temporal and spatial dynamics, which makes forecasting a
highly challenging task.

With the rapid development of machine learning and deep learning technologies, more
and more studies have applied these methods to time series forecasting tasks. Among these
methods, Recurrent Neural Networks (RNNs) have garnered attention due to their ability
to capture temporal dependencies in sequential data. Improved models of RNNs, such as
Long Short-Term Memory (LSTM)[3] networks and Gated Recurrent Units (GRU)[1], are
widely used in various fields, including air quality forecasting, for their superior perfor-
mance in handling long-term dependencies.

Although LSTM and GRU perform well in time series forecasting, they each have
strengths and weaknesses depending on the dataset and application scenarios. For in-
stance, LSTM excels in handling long-term dependencies, while GRU is advantageous in
terms of computational efficiency and simplicity. To further enhance predictive perfor-
mance, researchers have started exploring methods that combine multiple neural network
models to fully leverage their strengths in different tasks.

Inspired by GoogLeNet’s Inception module[4], this essay proposes an LSTM-GRU hy-
brid network architecture for PM2.5 time series forecasting. This architecture processes
input data in parallel through both LSTM and GRU, then integrates their outputs, thus
combining the advantages of both while maintaining computational efficiency. Compared
with traditional single network models, this architecture demonstrates significant improve-
ments in prediction accuracy and model stability. The results of this study provide new
insights and technical approaches for deep learning-based air quality forecasting and lay
the groundwork for future research.

The structure of this essay is as follows: The second section reviews LSTM and GRU
neural networks and describes the proposed LSTM-GRU hybrid network architecture in
detail; the third section presents data processing and exploratory data analysis; the fourth
section showcases the experimental design process and results analysis; the fifth section
summarizes the contributions of this study and provides an outlook on future research
directions.
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2 Methodology

2.1 LSTM

The LSTM network is a form of RNN that addresses the issues of gradient explosion and
gradient vanishing in RNNs, demonstrating better performance in handling long-term
dependencies [? ]. LSTM shares the same chain structure as RNNs, but its units include
three additional gates: input gate, forget gate, and output gate. Figure ?? illustrates
the structure of an LSTM block, where ct−1 and ht−1 represent the cell state and hidden
state from the previous time step, xt is the current input, ct and ht are the updated cell
state and hidden state, zi is the input gate, zf is the forget gate, zo is the output gate,
tanh and σ denote the hyperbolic tangent function and sigmoid function, respectively. All
three gates use the sigmoid function, so their outputs range between 0 and 1, reflecting
the proportion of information to retain or discard. In the figure, ⊗ denotes element-wise
multiplication, and ⊕ denotes element-wise addition. The cell update process is shown in
equation (2.6).

zf = σ(Wxfxt + Whfht−1 + bf ) (2.1)

zi = σ(Wxixt + Whiht−1 + bi) (2.2)

zo = σ(Wxoxt + Whoht−1 + bo) (2.3)

c̃t = tanh(Wxcxt + Whcht−1 + bc) (2.4)

ct = zf ⊗ ct−1 ⊕ zi ⊗ c̃t (2.5)

ht = zo ⊗ tanh(ct) (2.6)

Here, zf , zi, and zo represent the forget gate, input gate, and output gate, respectively;
Wxi, Wxf , Wxo, Wxc are weight matrices; bi, bf , bo, bc are the corresponding biases.

2.2 GRU Network

The Gated Recurrent Unit (GRU) is an improved version of RNN that simplifies the
structure of LSTM while retaining its ability to handle long-term dependencies. Similar
to LSTM, GRU uses gating mechanisms to control the flow of information, but it only
employs two gates: the reset gate and the update gate.

3



In GRU, the reset gate rt and update gate zt control how the information from the
previous time step influences the current state update and how the current state combines
with the previous state. The update equations for GRU are as follows:

zt = σ(Wxzxt + Whzht−1 + bz) (2.7)

rt = σ(Wxrxt + Whrht−1 + br) (2.8)

h̃t = tanh(Wxhxt + rt ⊗ (Whhht−1) + bh) (2.9)

ht = (1 − zt) ⊗ ht−1 ⊕ zt ⊗ h̃t (2.10)

In the above equations, zt is the update gate, controlling the proportion of new infor-
mation mixed with old information; rt is the reset gate, controlling the influence of the
previous state on the current state; h̃t is the candidate hidden state. GRU enhances com-
putational efficiency by simplifying the gate structure while achieving similar performance
to LSTM in many tasks.

2.3 LSTM-GRU Hybrid Network

The core structure of the LSTM-GRU hybrid network is shown in the code. We define an
Inception-like module, which contains three parallel branches:

• LSTM branch: Applies an LSTM layer with 30 neurons.

• GRU branch: Applies a GRU layer with 30 neurons.

• LSTM + GRU branch: First applies an LSTM layer with 20 neurons and returns
the full sequence output, then applies a GRU layer with 20 neurons.

The outputs of these three branches are fused using the concatenate operation to
form a comprehensive feature representation. In this experiment, the data is processed
through two connected Inception-like modules, and the final prediction results are gener-
ated through a fully connected layer. Figure 1 shows the structure of the model.

4



3 Data Processing

3.1 File Import

• Path: The dataset is imported from the file ../data/ChengduPM20100101 20151231.csv.

• Libraries Used: pandas is utilized for data processing and manipulation.

3.2 Dataset

• Dataset: The dataset is sourced from the UCI Machine Learning Repository. This
study focuses on the weather data of Chengdu and predicts the PM2.5 concentration
in Chengdu.

3.3 Column Description

The dataset contains the following columns:

• datetime: The date and time of the data record.

• season: The season at the time of data recording.

• PM: PM2.5 concentration (measured in micrograms per cubic meter).

• DEWP: Dew point temperature (measured in degrees Celsius).

• TEMP: Temperature (measured in degrees Celsius).

• HUMI: Humidity (measured as a percentage).

• PRES: Atmospheric pressure (measured in hectopascals).

• cbwd: Combined wind direction.

• Iws: Cumulative wind speed (measured in meters per second).

• precipitation: Hourly precipitation (measured in millimeters).

• Iprec: Cumulative precipitation (measured in millimeters).
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3.4 Data Preparation

1. Merge Date and Time Columns: Combine the year, month, day, and hour
columns into a single datetime column and set it as the index.

2. Remove Irrelevant Columns: Remove the No column to avoid the influence of
irrelevant data.

3. Select Data Range: Analysis starts from January 1, 2013, since PM2.5 measure-
ments are only available after this date.

4. One-Hot Encoding of Seasons: Use pandas.get dummies to apply one-hot en-
coding to the season column.

5. Calculate PM2.5 Values:

• Create a new PM column to store the PM2.5 values averaged from the various
stations (PM Caotangsi, PM Shahepu, PM US Post).

• Apply linear interpolation to handle missing values.

6. Label PM Values: Classify the PM values based on concentration and add a
PM label column. The air quality classification used in this study is based on the
”Technical Regulation on Ambient Air Quality Index (AQI) (Trial)” (HJ 633—2012).
Below are the specific classification standards and corresponding pollutant concen-
tration limits:

Table 1: Air Quality Sub-Index and Corresponding Pollutant Concentration Limits

Air Quality Level Air Quality Index PM2.5 (µg/m3) PM10 (µg/m3) SO2 (µg/m3) NO2 (µg/m3)
Excellent 0-50 0-35 0-50 0-50 0-40

Good 51-100 36-75 51-150 51-150 41-80
Mild Pollution 101-150 76-115 151-250 151-475 81-180

Moderate Pollution 151-200 116-150 251-350 476-800 181-280
Severe Pollution 201-300 151-250 351-420 801-1600 281-565
Serious Pollution 301-500 >250 >420 >1600 >565

7. Remove Redundant Columns: Remove the hour, year, and day columns.

8. Convert Time Series to Supervised Learning Data: Since PM2.5 values are
closely related to the previous time step’s state and exhibit continuity, we employed
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a time series conversion strategy. This method transforms time series data into a
format suitable for supervised learning by introducing lag values for each time step,
creating input-output pairs, and removing rows with missing values. This approach
helps capture short-term dependencies in the time series, enhancing the model’s
predictive capability. For more details, refer to [2].

9. Dataset Splitting: The dataset in this study covers three years of air quality data
from 2013 to 2015. The data from 2013 and 2014 are used for model training, while
the data from 2015 serve as the test set. This split allows the model to learn from
the first two years of data and validate its generalization ability on the third year
(2015).

3.5 Exploratory Data Analysis

Before performing time series forecasting, we conducted an exploratory data analysis
(EDA) to uncover patterns and potential issues in the data. Figure 2 shows the trends of
various features over time.

Based on the feature variations observed in the figure, we drew the following conclu-
sions and recommendations for processing:

1. Handling Wind Direction Feature: The distribution of wind direction features
is highly random, and the relationship between wind speed and PM2.5 concentration is
more significant. Therefore, in subsequent model construction, we will remove the wind
direction feature cbwd to simplify the model and reduce unnecessary noise.

2. Seasonal Variation: The PM2.5 concentration exhibits clear seasonal fluctua-
tions, with significantly higher concentrations in winter than in summer. This seasonal
variation may be related to heating, meteorological conditions, and other factors. In
subsequent model training, we recommend introducing seasonal features (e.g., using a
seasonal indicator variable or time series decomposition methods) to better capture this
pattern.
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4 Experimental Results and Parameter Settings

4.1 Model Configurations

In our experiments, we employed various models for comparison and configured them with
the following parameters:

• ARIMA Model:

– Order parameters: (p, d, q) = (5, 1, 0)

– Training data: Supervised learning data

– Prediction steps: 1-step prediction

• SVR Model:

– Kernel function: RBF

– Regularization parameter C: 1.0

– ϵ: 0.1

– Training data: Supervised learning data

• DNN Model:

– Input layer: 100 neurons, ReLU activation function

– Hidden layer: 50 neurons, ReLU activation function

– Output layer: 1 neuron, linear activation function

– Learning rate: 0.001

– Batch size: 72

– Epochs: 1000

• LSTM Model:

– Hidden layer neurons: 50

– Optimizer: Adam

– Learning rate: 0.001
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– Batch size: 24

– Epochs: 10000 (using early stopping)

• LSTM-GRU Hybrid Model:

– Model structure: Inception-like block, including LSTM branch, GRU branch,
and LSTM-GRU hybrid branch

– Optimizer: Adam

– Learning rate: 0.001

– Batch size: 24 (24 hours per day)

– Epochs: 10000 (using early stopping, patience=200)

4.2 Experimental Results

To compare the performance of different models, we recorded the RMSE, MAE, MAPE,
and prediction accuracy on the test set for each model. The table below summarizes the
comparison results of these metrics:

Table 2: Comparison Results of Different Models

Model RMSE MAE MAPE (%) Accuracy (%)
ARIMA 94.752 88.515 256.847 -

SVR 25.292 22.186 62.329 48.24
DNN 30.504 28.693 79.258 -
LSTM 8.682 6.151 14.051 91.56

LSTM-GRU Hybrid Model (Proposed) 8.261 5.621 11.224 94.44

4.3 Result Analysis

As shown in the table, the LSTM-GRU hybrid model outperforms the standalone LSTM
model and other models in terms of RMSE, MAE, MAPE, and accuracy. The classification
accuracy of the LSTM-GRU hybrid model improves by 34% compared to the LSTM model.
This indicates that by combining the strengths of LSTM and GRU, the LSTM-GRU
hybrid model can more effectively capture the trends in PM2.5 concentration, providing
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more accurate predictions. The DNN model also performs relatively well, with results
close to those of the LSTM-GRU hybrid model.

The traditional ARIMA model performs poorly in predicting PM2.5, with a MAPE
as high as 256.847%, demonstrating its limitations in handling complex nonlinear time
series data. Although the SVR model captures the trend in the data to some extent, it
still cannot compare with deep learning models.

4.4 Visualization of Results

To further illustrate the effectiveness of the models, we compared the predicted PM values
with the actual PM values, as shown in Figure 3. Figure 4 shows the changes in the loss
function during training.

5 References and Article Notes

The inspiration for the Inception module in this article is entirely derived from GoogLeNet[4].
The strategy for converting time series data into supervised learning format is based on
another method for analyzing PM2.5 forecasting. For more details, refer to [2]. The
neural network framework diagrams in this article were adapted using resources from
https://github.com/dair-ai/ml-visuals. The data and code used in this study can
be accessed on my GitHub repository: https://github.com/Yixiao-Wang-Stats/LST
M-GRU-Hybrid-Network. The dataset used in this article is sourced from the UCI Machine
Learning Repository. This article is based on my senior year time series analysis course
project. The original text was in Chinese, and the content has been directly translated
by ChatGPT-4o. Please excuse any discrepancies that may arise from the translation.
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Figure 1: LSTM-GRU Hybrid Network Architecture12



Figure 2: Trend of Various Features Over Time
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Figure 3: Comparison of Predicted PM Values and Actual PM Values
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Figure 4: Loss Function Changes for Test and Training Sets
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