
In-Class Kaggle Competition Writeup

Yixiao Wang

Nov 26th 2024
Kaggle ID: YixiaoWang0102

1 Exploratory Analysis

For this Kaggle competition, our primary objective is to predict the prices of Airbnbs in
New York City using information about their location, amenities, host details, availability,
and various other factors.

I began by briefly exploring the data. I examined the correlation matrix and histograms
of the numerical features to understand their distributions, and I calculated the number of
missing values for each feature. The missing data primarily falls into two categories: those
related to reviews and those associated with host responses. Below is a detailed analysis
of each feature, along with an explanation of the feature engineering steps applied. It is
important to note that this report primarily focuses on the feature engineering process itself.
The exploratory data analysis (EDA) is a complex and extensive component of this project.
I utilized the Sweetviz library to generate an automated EDA report. For completeness, the
generated EDA report has been attached in the last few pages of this document for reference.

I should first note that all the thresholds and cluster numbers used in feature engineer-
ing were determined based on parameters that performed well in my training experiments.
However, this aspect did not undergo rigorous cross-validation due to the excessively long
training time. For instance, when centralizing latitude and longitude, I did not use the
mean or median for centering; instead, I subtracted two "magic" constants. This approach
unexpectedly improved performance by 1%. While I do not know the exact reason for this im-
provement, the results consistently demonstrated enhanced performance. Furthermore, the
specific thresholds relied heavily on my intuition and iterative experimentation, combined
with feature importance evaluations. For example, the truncation threshold for neighbour-
hood_cleansed was guided by feature importance analysis, but the final value of 200 (as

1

opposed to 250 or 150) was a personal choice. There is no strict criterion or rule supporting
the rationale behind this specific decision.

1.1 Feature-by-Feature Analysis

First, I categorized the features into three main types: text features (which refer to
lengthy sentences that require semantic understanding or word clustering, excluding cate-
gorical variables such as neighborhood), categorical features, and numerical features. I also
addressed date variables separately. Below is the feature engineering process organized by
feature type.

1.1.1 Text Features

name: This column was removed during preprocessing because it did not offer significant
predictive value given the availability of the house description.

description, reviews:

For both reviews and descriptions:

• Text data was preprocessed through tokenization, stemming, and the removal of special
characters.

• Translation of non-English text in reviews was conducted using the Googletrans
Translator module. If the translation fails or the text is already in English, the
original text is preserved.

• Latent Dirichlet Allocation (LDA) was utilized to extract topic features from the text
data. For each topic, a column was added to represent the probability of that topic
within the text.

amenities:

• Amenities were divided into individual components.

• Each amenity was assigned to a cluster using KMeans clustering based on Sentence-
BERT embeddings.

• Cluster counts were computed for each property, generating features amenity_cluster_0,
amenity_cluster_1, ..., amenity_cluster_20. Then we manually established the map-
ping rules.

2

1.1.2 Categorical Features

property_type: Cleaned and grouped rare categories into ’others’. Low-frequency cat-
egories were merged based on a threshold of 20 occurrences.

neighbourhood_cleansed: Rare neighborhoods (fewer than 200 listings) were catego-
rized as ’others.’

neighbourhood_group_cleansed: Used directly for analysis without modification.

host_response_time: Missing values have been replaced with the placeholder ’missing’.

host_is_superhost: Converted to binary values (1 for True, 0 for False).

host_verifications: Converted into binary features for specific verifications (phone,
email, work_email). The total number of verifications was included as a separate feature.

room_type: One-hot encoded into separate binary columns.

bathrooms_text: Extracted information regarding private or shared bathrooms into
is_private_bathroom and is_shared_bathroom.

has_availability: This column was dropped as it showed little variance.

instant_bookable: Converted to binary (1 for True, 0 for False).

1.1.3 Numerical Features

latitude, longitude:

• Adjusted to centralized values for geographical interpretation.

• A categorical area feature (area_category) was developed based on geographical
clusters. It is important to note that this feature was entirely manually crafted, with
specific dividing lines clearly marked in the corresponding figure. The importance of
this feature is evident, as it substantially enhances the accuracy of price predictions.
This is further illustrated in the feature importance plot, where area_category ranks
prominently. In terms of direct impact, omitting this manually defined feature would
lead to an approximate increase of 0.01 in the root mean square error (RMSE).

host_response_rate, host_acceptance_rate: Missing values were replaced with a
placeholder value of 9999.

host_listings_count, host_total_listings_count: Ratios (host_listings_ratio and
calculated_to_listings_ratio) were created to capture trends.

3

calculated_host_listings_count, calculated_host_listings_count_entire_homes,
calculated_host_listings_count_private_rooms, calculated_host_listings_count_shared_rooms:
Retained for analysis without modification.

accommodates: Binned into categories such as 1 person, 2 persons, 3-5 persons, and
6+ persons.

bathrooms, bedrooms, beds: Missing values were replaced with 0.

availability_30, availability_60, availability_90, availability_365: Normalized
by their respective timeframes.

minimum_nights, maximum_nights: 1125 in maximum_nights was replaced with
9999.

number_of_reviews, number_of_reviews_ltm, number_of_reviews_l30d: Re-
tained as-is for further modeling.

review_scores_rating, review_scores_accuracy, review_scores_cleanliness,
review_scores_checkin, review_scores_communication, review_scores_location,
review_scores_value: Missing values replaced with 9999.

reviews_per_month: Missing values replaced with 0.

1.1.4 Date Variables

host_since, first_review, last_review:

• Split into year and month.

• Intervals between dates were calculated as new features (host_to_first_review_months,
first_to_last_review_months).

• Additional features for months from the current date (months_from_host_since, months_from_first_review,
months_from_last_review) were added.

1.1.5 Target

price

4

1.1.6 Transform

Scale high-variance columns: Columns with a standard deviation greater than 1 were
transformed using a log1p transformation (log(x+1)) to reduce skewness and normalize their
distributions. This ensures that features with high variance do not dominate the modeling
process, improving the overall performance of the model.

1.1.7 Dropped Columns

The following columns were removed from the dataset during preprocessing:

• name, description, reviews, amenities, property_type, host_since, first_review,
last_review, host_verifications, phone, email, work_email, bathrooms_text,
availability_365, has_availability.

Reasons for dropping columns:

• Processed columns: Columns such as name, description, reviews, amenities,
property_type, host_since, first_review, last_review were fully utilized for
feature extraction. Once the relevant features were derived, these original columns
became redundant and were dropped to reduce noise.

• Low importance: Columns like phone and availability_365 had minimal impor-
tance when evaluated against their influence on price prediction.

• Intuitive justification:

– Host verification methods (phone, email, work_email) primarily provide static
information about the host and are unlikely to directly influence the price at a
specific time.

– Yearly availability (availability_365) covers too long a period to provide relevant
information for immediate pricing. Shorter-term availability, such as availability_30
or availability_60, provides more actionable insights and was retained for mod-
eling.

5

2 Model Selection: XGBoost and Support Vector Re-
gression (SVR)

In this section, we clarify that our prediction metric is Root Mean Squared Error
(RMSE). Although the target variable consists of six categorical price intervals, there is an
inherent ordinal relationship among these categories. Therefore, we adopt regression models
to complete the task. One specific detail is that, when performing bagging after training the
models, we use rounding followed by majority voting (i.e., mode) instead of directly using
the average.

2.1 XGBoost Model

XGBoost is an efficient gradient-boosted decision tree algorithm, renowned for its com-
putational efficiency and flexibility. Boosting methods are generally an excellent starting
point, and specifically, XGBoost is particularly useful based on my experience. The reasons
for selecting XGBoost are as follows:

• Decision Tree-based models and Boosting are my favorite algorithms learned in this
course. Additionally, XGBoost is often referred to as the “champion” algorithm in
many Kaggle competitions.

• XGBoost offers a wide range of hyperparameters for tuning, providing significant flex-
ibility for fine-tuning in subsequent stages.

• XGBoost is computationally fast. Although it is slower than LightGBM, its speed is
still acceptable within the scope of this project. In contrast, CatBoost was observed to
be slower for our use case.

2.2 Support Vector Regression (SVR) Model

Support Vector Regression (SVR) is a kernel-based regression method suitable for model-
ing nonlinear relationships. From a theoretical perspective, radial basis functions (RBFs) are
effective tools for mapping data into higher-dimensional spaces, which align with the kernel
space concepts we studied in class. Therefore, I decided to experiment with SVR for this
project. However, after comprehensive evaluation, XGBoost was ultimately chosen for the
final model due to its superior performance. More specific,

6

• SVR performs well in high-dimensional feature spaces, especially with moderate-sized
datasets.

• RBF kernels enable the modeling of nonlinear relationships, making SVR suitable for
complex prediction problems.

• Tuned SVR models often exhibit strong generalization ability and are robust to outliers.

3 Training

3.1 XGBoost

XGBoost (eXtreme Gradient Boosting) is an efficient gradient-boosted decision tree al-
gorithm. Its training process iteratively constructs decision trees, where each new tree fits
the residuals of the previous iteration to progressively reduce model error. Additionally, XG-
Boost incorporates second-order derivative information, making loss function optimization
more precise compared to GBDT, which only uses first-order Taylor expansion. Furthermore,
regularization terms are added to prevent model overfitting.

3.2 Support Vector Machine (SVM)

Support Vector Machine (SVM) finds the maximum-margin hyperplane in the feature
space to perform classification. When data is not linearly separable in the original space,
SVM employs kernel functions to map the data into a higher-dimensional space, making
it linearly separable. For the linearly separable case, SVM transforms the problem into a
dual optimization problem, solved using a quadratic solver. Commonly used kernel func-
tions include linear kernel, polynomial kernel, and radial basis function (RBF) kernel. In
the higher-dimensional space, SVM identifies the hyperplane that maximizes the margin,
effectively classifying the data.

3.3 Time Estimation

Training the XGBoost model for approximately 500 iterations took about one and a half
hours on an L4 GPU.

7

4 Hyperparameter Selection

Figure 1: CV for XGBoost

Figure 2: CV for SVM

My overall parameter training strategy involves first performing cross-validation (CV) to
determine the basic important parameter ranges,(see Figure1,2). Since my final choice is
XGBoost, which is based on a tree model, I prioritized tuning the most impactful hyper-
parameters: max depth, learning rate, and number of estimators. These hyperparameters
directly influence the model’s capacity to capture complexity, learning efficiency, and over-
fitting potential. initially setting a wide range to explore potential values. By narrowing the
ranges through CV, I was able to set an effective foundation for further automated hyper-
parameter optimization. Afterward, I use the automated hyperparameter optimization tool,
Optuna, to search for better parameters systematically.For the CV portion, I selected 2-3
key parameters for adjustment and plotted results to show the outcomes for both models.
In these visualizations, darker colors indicate lower RMSE, and the plots reveal clear trends
in parameter changes. Specifically, for my primary method, XGBoost, I experimented with
various training approaches. Ultimately, I adopted the simplest approach, setting RMSE as
the objective for regression, as it achieved the best results. My specific attempts included:

8

1. Custom-defined objective: Considering that our target output must be integers, I ex-
perimented with defining a custom objective that enforced integer constraints and then
calculated RMSE for training.

2. Separate training: Since we observed that the presence or absence of reviews had a
significant impact on price trends, I considered training separate models for listings
with and without reviews.

3. Mapping predictions to integers: To better map predictions to integers, I explored the
following approaches:

• Rounding directly to the nearest integer.

• Learning an adaptive shrinkage coefficient to adjust predictions based on the esti-
mated value and the mean (however, this approach proved unstable, as the learned
coefficients did not perform well on the test set).

• Majority vote (major voting): This was the method I ultimately adopted, combin-
ing predictions from multiple strong models through voting to achieve a bagging
effect. The optimal number of models used for voting was selected based on cross-
validation results (see Figure 3).

Figure 3: Cross-validation results for selecting the optimal number of models used in majority
voting.

9

5 Data Splits

My data splitting strategy involves dividing the training data into 80% for training and
20% for testing. During training, I utilize 5-fold cross-validation to further validate the
model. Throughout the training process, I ensure that the results from the 20% test data
remain hidden to avoid data leakage. It is worth noting that the manually added categorical
area feature, based on geographical clusters, does not lead to overfitting. This is because the
region segmentation was manually defined and derived from the initial 80% training data,
ensuring no overlap with the test set and mitigating the risk of overfitting.

6 Reflection on Progress

6.1 Challenges with Natural Language Processing (NLP)

One of the most significant challenges I faced was the failure to effectively process natural
language information. I experimented with various approaches, including Latent Dirichlet
Allocation (LDA), direct encoding with K-Nearest Neighbors (KNN), and sentiment extrac-
tion, but none yielded satisfactory results. For example, in the classification of amenities,
I struggled to identify a reliable classification scheme. Ultimately, I manually curated the
classification by initially extracting 20 basic categories and then refining the mapping until
I was satisfied with the result. Similarly, I believe there is untapped potential in extracting
more valuable insights from reviews. However, my limited familiarity with NLP hindered my
ability to achieve better outcomes in this area. Although I considered using OpenAI’s API for
large-scale data processing, issues such as formatting inconsistencies rendered it unstable for
datasets with thousands of entries. Overall, this area remains the most significant challenge
in my project.

6.2 Handling Missing Values

Dealing with missing values also posed a considerable challenge. From the distribution
of price, it became evident that missing values could significantly distort predictions. I
hypothesized that imputing missing values with a distinct high value, such as 9999, could
encode the information carried by their absence. I also experimented with splitting the data
into two separate training sets based on whether certain values were missing. However, the
results from this approach were suboptimal. For reviews, I compared replacing missing

10

values with a specific placeholder value against imputing the median (a more stable measure
than the mean). The latter yielded slightly better numerical results, suggesting that a simpler
imputation strategy could be more effective.

6.3 Feature Selection

In terms of feature selection, aside from eliminating obviously irrelevant features, most
features—despite appearing uninformative (as suggested by low correlation coefficients, low
importance scores, non-significant AUCs, or large p-values in stepwise regression)—still in-
fluenced the prediction results. For instance, I expected that setting a high threshold for
filtering neighbourhood categories would improve performance, but the results were unsat-
isfactory. Similarly, when I attempted to train the model using only the top 10, 20, or 50
most important features, the results were consistently worse than using all available features.
This indicates that even seemingly minor features contribute meaningfully when combined
in the training process.

7 Kaggle Submission and Performance Analysis

My Kaggle username is YixiaoWang0102. Currently, my model achieves a score of
0.727 on the public leaderboard. Based on the results from previous submissions, we can
draw the following conclusions:

• After processing textual information, the model’s score improved from 0.75 to 0.74.

• After adding numerous detailed feature engineering steps, the model’s performance
decreased slightly to 0.735.

• Finally, using mode for bagging further improved the score from 0.733 to 0.727.

These results indicate that feature engineering remains the most critical step in achiev-
ing better model performance.

8 Interpretability

I have done extensive work on the interpretability of feature engineering and feature im-
portance. In this section, I will elaborate on my analytical steps for feature engineering,

11

which also serves as a supplement to the first section where I primarily focused on imple-
mentation details.Firstly, I show the feature importance and feature ROC curves here(see
Figure4,5,6).

8.1 Minimum Nights

Although I did not perform any specific feature engineering for this variable, the feature
importance analysis revealed that the minimum nights variable significantly impacts price
prediction. This aligns with our understanding: properties listed for longer-term rentals may
have lower price expectations, as hosts often provide discounts to encourage extended stays.
Conversely, short-term rentals, particularly those targeting tourists, tend to be priced higher
due to higher demand and the premium nature of short-term accommodations.

8.2 Geographical Information Analysis

From the initial feature importance analysis (see Figures 7 and 8), the first figure shows
the training data, where prices are represented by varying color intensities, and the test
data distribution is indicated by red points. It is evident that the test data distribution is
uniform. The second figure divides the prices into three distinct intervals. it became evident
that longitude, latitude, and the Manhattan area significantly influence rental prices. This
insight reinforced my belief that rental prices are heavily affected by geographical factors,
aligning with common knowledge. To explore this further, I plotted longitude and latitude
coordinates, using color to represent rental prices. While raw coordinates were too dispersed
to be informative and neighborhood-level granularity was too coarse, careful observation
revealed distinct clusters of high-price listings in Lower Manhattan and northern Brooklyn.
Other areas in Manhattan and central Brooklyn showed a mix of high and medium-priced
listings, while most other areas were dominated by low to medium-priced rentals. Based on
these patterns, I manually divided the geographical regions into three distinct categories,
capturing price variability effectively.

8.3 Amenity Features

I believe that both the number of amenities and the diversity of amenity types play a
critical role in predicting rental prices. Initially, I only counted whether a listing had a certain
type of amenity. However, after further consideration, I revised this to count the number of
items within each amenity category. For instance, a listing with only one shampoo is signif-

12

Fi
gu

re
4:

Fe
at

ur
e

im
po

rt
an

ce
ba

se
d

on
th

e
G

in
ii

nd
ex

.
T

hi
s

hi
gh

lig
ht

s
th

e
re

la
tiv

e
im

po
rt

an
ce

of
fe

at
ur

es
in

pr
ed

ic
tin

g
pr

ic
e.

Fe
at

ur
es

w
ith

hi
gh

er
G

in
ii

m
po

rt
an

ce
co

nt
rib

ut
e

m
or

e
to

th
e

m
od

el
’s

pr
ed

ic
tiv

e
po

we
r.

13

Fi
gu

re
5:

Pe
rm

ut
at

io
n-

ba
se

d
fe

at
ur

e
im

po
rt

an
ce

.
T

hi
sp

lo
ts

ho
w

st
he

im
pa

ct
of

pe
rm

ut
in

g
ea

ch
fe

at
ur

e
on

th
e

m
od

el
’s

R
M

SE
,

pr
ov

id
in

g
in

sig
ht

in
to

th
e

ro
bu

st
ne

ss
an

d
re

lia
bi

lit
y

of
ea

ch
fe

at
ur

e.

14

Fi
gu

re
6:

Fe
at

ur
e

im
po

rt
an

ce
ba

se
d

on
A

U
C

(A
re

a
U

nd
er

th
e

C
ur

ve
).

T
hi

s
pl

ot
em

ph
as

iz
es

th
e

di
sc

rim
in

at
iv

e
po

we
r

of
in

di
vi

du
al

fe
at

ur
es

in
pr

ed
ic

tin
g

di
ffe

re
nt

pr
ic

e
ca

te
go

rie
s.

15

Figure 7: Geographic distribution of listings with prices. Red points indicate test data
locations, showing that the test data is uniformly distributed.

Figure 8: This map categorizes areas into three price levels (low, medium, high). Based
on price concentration, areas with the highest concentration are marked with a red overlay
(category 2), moderately mixed areas with green (category 1), and the remaining areas are
labeled as category 0.

16

icantly different from one that offers a full set of toiletries, including shampoo, conditioner,
face wash, and cosmetics.

8.4 Reviews

During my analysis, I discovered that some reviews were not written in English but in
languages such as Korean and Chinese. To address this, I used a translation tool to convert
all reviews into English, ensuring the resulting feature was more robust and meaningful.

8.5 Availability Variables

For availability-related features, I observed that 30, 60, and 90-day availability variables
have overlapping information. To address this, I tested two approaches: calculating differ-
ences between these variables and normalizing the available days by the total number of days.
I chose the latter approach because normalization not only reduced the variability and scale
of the data but also provided a direct measure of a property’s "demand level" from short-term
to long-term availability. Additionally, I removed the 365-day availability feature due to its
low importance. Similarly, for host registration dates and review dates, I retained only the
year and month information, discarding specific dates due to their low feature importance.

8.6 Time Interval Variables

For date-related variables, I focused on time intervals rather than absolute dates. These
intervals fall into two categories. The first category includes the interval between the start
of hosting and the first review, as well as the time between the first and most recent review.
These intervals reflect how quickly a property becomes active and how long it remains ac-
tive. The second category measures the time elapsed from these events to the current date,
capturing how long the property has been on the market and the recency of user activity.
Both categories are directly related to rental pricing.

8.7 Host Listing Ratios

For features related to host listings, such as cumulative listings, total listings, and listings
across all platforms, I computed ratios to account for their inherent hierarchical relationships.
These ratios reveal the host’s preferences for specific platforms and correlate with their pricing
strategies.

17

8.8 Room Privacy and Bathroom Text Analysis

Room privacy is a crucial determinant of pricing. To capture this, I explicitly extracted
information on whether a bathroom was private or shared from the bathroom textual data.
By parsing the descriptions for keywords such as “private” and “shared,” I created a categor-
ical feature that significantly improved the interpretability and performance of the pricing
model. This feature directly aligns with user expectations regarding privacy and amenities,
further enhancing the model’s predictive power.

18

9 Code

Listing 1: Basic Preparation
1 # Download libraries
2 !pip install optuna
3 !pip install googletrans
4 !pip install langdetect
5 !pip install sweetviz
6

7 # Import libraries
8 # Import general libraries
9 import pandas as pd

10 import numpy as np
11 from datetime import datetime
12 from tqdm import tqdm
13 import re
14 import matplotlib . pyplot as plt
15 import seaborn as sns
16

17 # Import NLP - related libraries
18 from nltk.stem. porter import PorterStemmer
19 from nltk. tokenize import word_tokenize
20 from sklearn . feature_extraction .text import CountVectorizer
21 from sklearn . decomposition import LatentDirichletAllocation
22 from langdetect import detect
23 from googletrans import Translator
24

25 # Sentence embeddings and clustering
26 from sentence_transformers import SentenceTransformer
27 from sklearn . cluster import KMeans
28

29 # Machine Learning libraries
30 from sklearn . linear_model import LinearRegression
31 from sklearn . ensemble import AdaBoostRegressor
32 from sklearn .svm import SVR
33 from xgboost import XGBRegressor
34 from lightgbm import LGBMRegressor
35 from sklearn . impute import SimpleImputer
36 from sklearn . model_selection import train_test_split , KFold
37 from sklearn . metrics import mean_squared_error
38 from sklearn . inspection import permutation_importance
39 from sklearn . preprocessing import StandardScaler
40

19

41 # Optimization library
42 import optuna
43

44 # Statistical utilities
45 from scipy.stats import mode
46

47 # Visualization libraries
48 import plotly . graph_objects as go
49 import sweetviz as sv
50 from IPython . display import HTML

Listing 2: Data Download
1 # This is the original data , but the LDA process is quite lengthy , so

we saved the original data with the LDA results included .
2 # The LDA code is provided in the preprocessing section but has been

commented out. import pandas as pd
3 # train_data = pd. read_csv (’/ content /drive/My Drive/Colab

Notebooks / final_project /train.csv ’, parse_dates =[’ host_since ’,
’first_review ’, ’last_review ’])

4 # test_data = pd. read_csv (’/ content /drive/My Drive/Colab
Notebooks / final_project /test.csv ’, parse_dates =[’ host_since ’,
’first_review ’, ’last_review ’])

5

6 train_data = pd. read_csv (’/ content /drive/My Drive/Colab
Notebooks / final_project / train_LDA .csv ’, parse_dates =[’host_since ’,
’first_review ’, ’last_review ’])

7 test_data = pd. read_csv (’/ content /drive/My Drive/Colab
Notebooks / final_project / test_LDA .csv ’, parse_dates =[’host_since ’,
’first_review ’, ’last_review ’])

8

9 # This is the processed amenities mapping used for analyzing
amenities , which is based on train_data

10 # and includes the parts I manually handled , so it can be directly
imported .

11 # The categories for numbering are roughly as follows :
12 # 0: Entertainment and networking facilities , such as wifi , TV ,

Bluetooth speakers
13 # 1: Safety - related items , such as locker , alarm
14 # 2: Kitchen - related items , such as oven , refrigerator
15 # 3: Daily necessities , such as shampoo , conditioner
16 # 4: Sports and health facilities , such as gym , pool
17 # 5: Additional or paid services
18 # 6: Family - or baby - friendly facilities

20

19 # 7: Unclear classifications , such as information related to days of
the week

20 amenities_df = pd. read_excel ("/ content /drive/My Drive/Colab
Notebooks / final_project / processed_amenities_cluster_mapping .xlsx")

21 amenities_cluster_mapping = dict(zip(amenities_df [’amenity ’],
amenities_df [’cluster_id ’]))

22 print("First 10 items in amenities_cluster_mapping :")
23 for i, (key , value) in enumerate (amenities_cluster_mapping .items ()):
24 print(f"{key }: {value}")
25 if i == 10:
26 break

Listing 3: EDA
1 # # Create a report
2 # report = sv. analyze (train_data)
3

4 # # Save the report as an HTML file
5 # report . show_html ("/ content /drive/My Drive/Colab

Notebooks / final_project / train_data_distribution .html ")
6

7 # Load the HTML file content
8 with open("/ content /drive/My Drive/Colab

Notebooks / final_project / train_data_distribution .html", "r") as f:
9 html_content = f.read ()

10

11 # Display the report directly in Colab
12 HTML(html_content)
13

14 # Select only numerical columns from train_data
15 numerical_columns = train_data . select_dtypes (include =[np. number])
16

17 # Calculate the correlation matrix
18 correlation_matrix = numerical_columns .corr ()
19

20 # Plot the correlation matrix using seaborn
21 plt. figure (figsize =(40 , 30))
22 sns. heatmap (correlation_matrix , annot=True , fmt=".2f",

cmap=" coolwarm ", cbar=True , square =True)
23 plt.title(" Correlation Matrix of Numerical Features ", fontsize =16)
24 plt. xticks (rotation =45, ha=’right ’)
25 plt. yticks (rotation =0)
26 plt.show ()
27

21

28 import matplotlib . pyplot as plt
29

30 # We will mark the ‘test_data ‘ dataset in red and visualize
‘train_data ‘ with price as the color scale

31 # to check if the distribution is even.
32

33 # Set the figure size
34 plt. figure (figsize =(40 , 30))
35

36 # Plot the scatter plot for ‘train_data ‘, with price represented by
color

37 scatter_train = plt. scatter (
38 train_data [’longitude ’], # Longitude data
39 train_data [’latitude ’], # Latitude data
40 c= train_data [’price ’], # Price data for color
41 cmap=’viridis ’, # Use ‘viridis ‘ colormap
42 alpha =0.5 , # Set transparency
43 label=’Train Data (Colored by Price)’ # Legend label
44)
45

46 # Plot the scatter plot for ‘test_data ‘, marked in red
47 plt. scatter (
48 test_data [’longitude ’], # Longitude data
49 test_data [’latitude ’], # Latitude data
50 color=’red ’, # Use red color for points
51 alpha =0.5 , # Set transparency
52 label=’Test Data (Red Points)’ # Legend label
53)
54

55 # Add a color bar to show the price scale
56 plt. colorbar (scatter_train , label=’Price ’)
57

58 # Add title and axis labels
59 plt.title(’Geographic Distribution of Listings ’, fontsize =16) # Set

the title
60 plt. xlabel (’Longitude ’, fontsize =12) # Set X-axis label
61 plt. ylabel (’Latitude ’, fontsize =12) # Set Y-axis label
62

63 # Display grid lines for better readability
64 plt.grid(alpha =0.3)
65

66 # Add legend
67 plt. legend (fontsize =12)
68

22

69 # Show the plot
70 plt.show ()
71

72 # Categorize ‘price ‘ into three levels
73 # Define price range bins
74 train_data [’price_category ’] = pd.cut(
75 train_data [’price ’],
76 bins =[-1, 2, 4, 6], # Define ranges : Low (0 -2) , Medium (3 -4) , High

(5 -6)
77 labels =[’Low ’, ’Medium ’, ’High ’] # Labels for categories
78)
79

80 # Set color mapping
81 color_mapping = {’Low ’: ’blue ’, ’Medium ’: ’green ’, ’High ’: ’red ’}
82 train_data [’price_color ’] =

train_data [’price_category ’]. map(color_mapping)
83

84 # Plot the data
85 plt. figure (figsize =(50 , 30))
86 for category , color in color_mapping .items ():
87 subset = train_data [train_data [’price_category ’] == category]
88 plt. scatter (
89 subset [’longitude ’],
90 subset [’latitude ’],
91 c=color ,
92 alpha =0.5 ,
93 label=f’{ category } Price ’
94)
95

96 # Add gridlines for reference areas
97 plt. axhline (y=40.7 , color=’black ’, linestyle =’-’, linewidth =0.5) #

Horizontal line at 40.7
98 plt. axhline (y=40.77 , color=’black ’, linestyle =’-’, linewidth =0.5) #

Horizontal line at 40.77
99 plt. axhline (y=40.82 , color=’black ’, linestyle =’-’, linewidth =0.5) #

Horizontal line at 40.82
100 plt. axhline (y=40.655 , color=’black ’, linestyle =’-’, linewidth =0.5) #

Horizontal line at 40.655
101 plt. axhline (y=40.75 , color=’black ’, linestyle =’-’, linewidth =0.5) #

Horizontal line at 40.75
102 plt. axhline (y=40.66 , color=’black ’, linestyle =’-’, linewidth =0.5) #

Horizontal line at 40.66
103 plt. axvline (x= -73.9 , color=’black ’, linestyle =’-’, linewidth =0.5) #

Vertical line at -73.9

23

104 plt. axvline (x= -73.97 , color=’black ’, linestyle =’-’, linewidth =0.5) #
Vertical line at -73.97

105 plt. axvline (x= -73.93 , color=’black ’, linestyle =’-’, linewidth =0.5) #
Vertical line at -73.93

106 plt. axvline (x= -74.02 , color=’black ’, linestyle =’-’, linewidth =0.5) #
Vertical line at -74.02

107 plt. axvline (x= -73.96 , color=’black ’, linestyle =’-’, linewidth =0.5) #
Vertical line at -73.96

108

109

110

111

112 # Add legend
113 plt. legend (title=’Price Category ’, fontsize =12)
114

115 # Add title and axis labels
116 plt.title(’Geographic Distribution of Listings by Price Category ’,

fontsize =16)
117 plt. xlabel (’Longitude ’, fontsize =12)
118 plt. ylabel (’Latitude ’, fontsize =12)
119

120 # Display grid
121 plt.grid(alpha =0.3)
122

123 # Show the plot
124 plt.show ()

Listing 4: Feature Engineering
1 # Initialize PorterStemmer
2 stemmer = PorterStemmer ()
3

4 # # Initialize Translator
5 # translator = Translator ()
6

7 # def translate_text (text):
8 # """
9 # Translate non - English text to English .

10 # """
11 # try:
12 # if detect (text) != ’en ’: # Check if the text is not in

English
13 # return translator . translate (text , src=’auto ’,

dest=’en ’).text

24

14 # return text
15 # except :
16 # return text # Return original text if translation fails
17

18 def preprocess_airbnb_data (dataframe ,
amenities_cluster_mapping = amenities_cluster_mapping ,
lda_model_desc =None ,

19 lda_model_reviews =None , vectorizer_desc =None , vectorizer_reviews =None ,
20 num_clusters =8, n_topics_desc =7, n_topics_reviews =7):
21 """
22 Preprocess the Airbnb dataset :
23 Includes date splitting , feature processing , LDA model generation and

application , category alignment , etc.
24 """
25 # ###
26 # 1. Date Processing
27 # ###
28 # 1.1 Split date columns into year and month
29 def split_date_column (df , column_name):
30 """
31 Splits a date column into year and month columns .
32 Note: Day is not extracted , as it is less relevant to the importance

of the data.
33 """
34 df[f’{ column_name }_year ’] = df[column_name].dt.year
35 df[f’{ column_name } _month ’] = df[column_name].dt.month
36 return df
37

38 # List of date columns to process
39 date_columns = [’host_since ’, ’first_review ’, ’last_review ’]
40 for col in date_columns :
41 dataframe = split_date_column (dataframe , col)
42

43 # 1.2 Calculate date intervals in months
44 def calculate_date_intervals_months (df , start_col , end_col ,

new_col_name):
45 """
46 Calculates the interval (in months) between two date columns ,

handling NaN values .
47 The calculation is based on full months (e.g., from 2023 -01 -15 to

2023 -03 -10 equals 2 months).
48 """
49 def calculate_month_diff (start , end):
50 if pd. isnull (start) or pd. isnull (end):

25

51 return 0 # Replace NaN with 0
52 return (end.year - start.year) * 12 + (end.month - start.month)
53

54 df[new_col_name] = df.apply(lambda row:
calculate_month_diff (row[start_col], row[end_col]), axis =1)

55 return df
56

57 # Calculate intervals in months between relevant columns
58 dataframe = calculate_date_intervals_months (dataframe , ’host_since ’,

’first_review ’, ’host_to_first_review_months ’)
59 dataframe = calculate_date_intervals_months (dataframe ,

’first_review ’, ’last_review ’, ’first_to_last_review_months ’)
60 dataframe [’host_to_first_review_months ’] =

dataframe [’host_to_first_review_months ’]. apply(lambda x: max(x, 0))
61 dataframe [’first_to_last_review_months ’] =

dataframe [’first_to_last_review_months ’]. apply(lambda x: max(x, 0))
62

63 # 1.3 Calculate months from current date
64 current_date = datetime (2024 , 11, 1) # Set the current reference date
65

66 def calculate_months_from_now (df , column_name , new_column_name):
67 """
68 Calculates the number of months from a given date column to the

current date.
69 Missing values are filled with 0. For differences within the same

month , the result is 0.
70 """
71 def calculate_month_diff (start , end):
72 if pd. isnull (start) or pd. isnull (end):
73 return 0 # Missing values are replaced with a placeholder (0)
74 years_diff = end.year - start.year
75 months_diff = end.month - start.month
76 total_months = years_diff * 12 + months_diff
77 if end.day < start.day: # Adjust for partial months
78 total_months += 1
79 return max(total_months , 0)
80

81 df[new_column_name] = df[column_name]. apply(lambda x:
calculate_month_diff (x, current_date))

82 return df
83

84 # Calculate months from current date for relevant columns
85 print(" Calculating months from current date ...")
86 dataframe = calculate_months_from_now (dataframe , ’host_since ’,

26

’months_from_host_since ’)
87 dataframe = calculate_months_from_now (dataframe , ’first_review ’,

’months_from_first_review ’)
88 dataframe = calculate_months_from_now (dataframe , ’last_review ’,

’months_from_last_review ’)
89

90 # 1.4 Drop original date columns
91 print(" Dropping original date columns ...")
92 dataframe .drop(columns = date_columns , inplace =True)
93

94 # ###
95 # 2. Category Features Processing
96 # ###
97

98 # 2.1 Creating binary columns for host verifications and counting
methods of verification

99 verification_types = [’phone ’, ’email ’, ’work_email ’]
100 for verification in verification_types :
101 dataframe [verification] =

dataframe [’host_verifications ’]. apply(lambda x: 1 if verification
in x else 0)

102

103 # Count the total number of verification methods
104 dataframe [’verification_count ’] =

dataframe [verification_types]. sum(axis =1)
105

106 # 2.2 Creating columns for shared or private bathrooms
107 dataframe [’is_shared_bathroom ’] = dataframe [’bathrooms_text ’]. apply(
108 lambda x: 1 if ’shared ’ in str(x).lower () else 0
109)
110 dataframe [’is_private_bathroom ’] = dataframe [’bathrooms_text ’]. apply(
111 lambda x: 1 if ’private ’ in str(x).lower () else 0
112)
113

114 # 2.3 Creating ratio features for host listings
115 required_columns = [’host_listings_count ’,

’host_total_listings_count ’, ’calculated_host_listings_count ’]
116

117 # Ratios provide trend insights about the host ’s property data
118 dataframe [’host_listings_ratio ’] = dataframe [’host_listings_count ’] /

dataframe [’host_total_listings_count ’]
119 dataframe [’calculated_to_listings_ratio ’] =

dataframe [’calculated_host_listings_count ’] /
dataframe [’host_listings_count ’]

27

120

121 # 2.4 Cleaning and processing the ’property_type ’ column
122 def clean_property_type (column , threshold =20):
123 """
124 Cleans the ’property_type ’ column by standardizing text and grouping

rare categories into ’others ’.
125

126 Parameters :
127 column (pd. Series): The property_type column to clean.
128 threshold (int): Minimum frequency to retain a category .
129

130 Returns :
131 pd. Series : Cleaned property_type column with low - frequency categories

grouped as ’others ’.
132 """
133 # Standardize and clean property_type values
134 cleaned_column = (
135 column
136 .str.lower ()
137 .str. replace (r"^(private room| shared room| entire |room in)\s+in\s+",

"", regex=True)
138 .str. replace (r"^(private room| shared room| entire |room)", "",

regex=True)
139 .str. replace (r"\sin\s.*$", "", regex=True)
140 .str. replace (r"\bin\b", "", regex=True)
141 .str.strip ()
142)
143

144 # Replace missing or empty values with ’missing ’
145 cleaned_column = cleaned_column . replace (["", None , np.nan], " missing ")
146

147 # Count the frequency of each category
148 value_counts = cleaned_column . value_counts ()
149

150 # Group rare categories below the threshold into ’others ’
151 cleaned_column = cleaned_column .apply(
152 lambda x: x if x == " missing " or value_counts [x] >= threshold else

" others "
153)
154

155 return cleaned_column
156

157 # 2.5 Further processing for ’property_type_cleaned ’
158 dataframe [’property_type_cleaned ’] =

28

clean_property_type (dataframe [’property_type ’], threshold =20)
159

160 # Count the occurrences of each value and group rare values into
’others ’

161 value_counts = dataframe [’property_type_cleaned ’]. value_counts ()
162 dataframe [’property_type_cleaned ’] =

dataframe [’property_type_cleaned ’]. apply(
163 lambda x: x if value_counts [x] >= 100 else ’others ’
164)
165

166 # 2.6 Handling rare values in ’neighbourhood_cleansed ’
167 if ’neighbourhood_cleansed ’ in dataframe . columns :
168 neighbourhood_counts =

dataframe [’neighbourhood_cleansed ’]. value_counts ()
169 rare_neighbourhoods = neighbourhood_counts [neighbourhood_counts <

200]. index
170 dataframe [’neighbourhood_cleansed ’] =

dataframe [’neighbourhood_cleansed ’]. replace (rare_neighbourhoods ,
’others ’)

171

172 # ###
173 # 3. Numerical Features Processing
174 # ###
175

176 # 3.1 Normalize availability columns
177 availability_columns = {
178 ’availability_365 ’: 365,
179 ’availability_90 ’: 90,
180 ’availability_60 ’: 60,
181 ’availability_30 ’: 30
182 }
183 for col , total_days in availability_columns .items ():
184 dataframe [col] = dataframe [col] / total_days
185

186 # 3.2 Handling missing values
187 dataframe .loc[dataframe [’maximum_nights ’] == 1125 , ’maximum_nights ’]

= 9999 # Replace default value with a better estimate
188 dataframe [’bedrooms ’] = dataframe [’bedrooms ’]. fillna (0) # Fill

missing values with 0
189 dataframe [’bathrooms ’] = dataframe [’bathrooms ’]. fillna (0)
190

191 # 3.3 Create a new feature ’accommodates_category ’
192 def categorize_accommodates (x):
193 if x == 1:

29

194 return ’1 person ’
195 elif x == 2:
196 return ’2 persons ’
197 elif 3 <= x <= 5:
198 return ’3-5 persons ’
199 else:
200 return ’6+ persons ’
201

202 dataframe [’accommodates_category ’] =
dataframe [’accommodates ’]. apply(categorize_accommodates)

203

204 # Fill missing values for ’host_response_time ’
205 dataframe [’host_response_time ’] =

dataframe [’host_response_time ’]. fillna (’missing ’)
206

207 # 3.4 Assign a geographical category based on latitude and longitude
208 def assign_area_category (row):
209 """
210 Assign an area category based on latitude and longitude rules.
211 Categories :
212 2: High concentration of specific price distributions
213 1: Mixed price distribution
214 0: Predominantly low/mid -price areas
215 """
216 if (
217 (40.75 <= row[’latitude ’] <= 40.77 and -74.02 <= row[’longitude ’] <

-73.96) or
218 (40.7 <= row[’latitude ’] <= 40.75 and -74.02 <= row[’longitude ’] <

-73.97)
219):
220 return 2
221 elif (
222 (40.77 <= row[’latitude ’] <= 40.82 and -74.02 <= row[’longitude ’] <

-73.93) or
223 (40.7 <= row[’latitude ’] <= 40.75 and -73.97 <= row[’longitude ’] <

-73.93) or
224 (40.66 <= row[’latitude ’] <= 40.7 and -74.02 <= row[’longitude ’] <

-73.9)
225):
226 return 1
227 else:
228 return 0
229

230 dataframe [’area_category ’] = dataframe .apply(assign_area_category ,

30

axis =1)
231

232 # Adjust latitude and longitude to centralized values
233 dataframe [’latitude ’] = dataframe [’latitude ’] - 41
234 dataframe [’longitude ’] = dataframe [’longitude ’] + 74
235

236 # 3.5 Fill missing values for review scores and rates with a default
value

237 missing_vars = [
238 ’review_scores_rating ’, ’review_scores_accuracy ’,

’review_scores_cleanliness ’,
239 ’review_scores_checkin ’, ’review_scores_communication ’,

’review_scores_location ’,
240 ’review_scores_value ’, ’reviews_per_month ’, ’host_response_rate ’,

’host_acceptance_rate ’
241]
242 for var in missing_vars :
243 dataframe [var] = dataframe [var]. fillna (9999)
244

245 # ###
246 # 4. Text Data Processing
247 # ###
248

249 # # 4.1 LDA Feature Extraction Function
250 # def lda_processing (text_column , vectorizer =None , lda_model =None ,

n_topics =5):
251 # """
252 # Extract LDA features from a text column .
253

254 # Parameters :
255 # text_column (pd. Series): Column containing text data.
256 # vectorizer (CountVectorizer): Optional pre - fitted

CountVectorizer .
257 # lda_model (LatentDirichletAllocation): Optional pre - fitted

LDA model.
258 # n_topics (int): Number of topics for LDA.
259

260 # Returns :
261 # tuple: Topic matrix , fitted vectorizer , and fitted LDA

model.
262 # """
263 # print(f" Vectorizing { text_column .name }...")
264 # if vectorizer is None:
265 # vectorizer = CountVectorizer (max_features =5000 ,

31

stop_words =’ english ’)
266 # text_matrix =

vectorizer . fit_transform (text_column . astype (str))
267 # else:
268 # text_matrix = vectorizer . transform (text_column . astype (str))
269

270 # print(f" Applying LDA on { text_column .name }...")
271 # if lda_model is None:
272 # lda_model =

LatentDirichletAllocation (n_components =n_topics , random_state =42)
273 # topic_matrix = lda_model . fit_transform (text_matrix)
274 # else:
275 # topic_matrix = lda_model . transform (text_matrix)
276

277 # return topic_matrix , vectorizer , lda_model
278

279

280 # # 4.2 Text Preprocessing Function
281 # def preprocess_text (text , stemmer):
282 # """
283 # Custom text preprocessing : tokenization , stemming , removing

special characters .
284

285 # Parameters :
286 # text (str): Input text.
287 # stemmer (PorterStemmer): Stemmer instance for stemming

tokens .
288

289 # Returns :
290 # str: Processed text.
291 # """
292 # if pd. isnull (text) or text.strip () == ’’:
293 # return " missing "
294

295 # # Replace escape characters
296 # text = text. replace ("\\ ’" , "’"). replace ("\\\"" , "\"")
297

298 # # Remove special characters and convert to lowercase
299 # text = re.sub(r ’\W+’, ’ ’, text).lower ()
300

301 # # Tokenize and apply stemming
302 # tokens = text.split ()
303 # stemmed_tokens = [stemmer .stem(token) for token in tokens]
304 # return ’ ’.join(stemmed_tokens)

32

305

306

307 # # 4.3 Preprocessing and LDA for ’description ’
308 # tqdm. pandas ()
309 # stemmer = PorterStemmer ()
310

311 # print (" Preprocessing descriptions ...")
312 # dataframe [’ description ’] =

dataframe [’ description ’]. astype (str). progress_apply (
313 # lambda x: preprocess_text (x, stemmer)
314 #)
315

316 # print (" Applying LDA on description ...")
317 # description_topics , vectorizer_desc , lda_model_desc =

lda_processing (
318 # dataframe [’ description ’], vectorizer =None , lda_model =None ,

n_topics =5
319 #)
320 # for i in range(description_topics .shape [1]):
321 # dataframe [f’description_topic_ {i}’] = description_topics [:, i]
322

323

324 # # 4.4 Preprocessing and LDA for ’reviews ’
325 # print (" Translating reviews ...")
326 # dataframe [’ reviews ’] =

dataframe [’ reviews ’]. astype (str). progress_apply (
327 # lambda x: translate_text (x) # Assumes ‘translate_text ‘ is

defined elsewhere
328 #)
329

330 # print (" Preprocessing reviews ...")
331 # dataframe [’ reviews ’] = dataframe [’ reviews ’]. progress_apply (
332 # lambda x: preprocess_text (x, stemmer)
333 #)
334

335 # print (" Applying LDA on reviews ...")
336 # review_topics , vectorizer_reviews , lda_model_reviews =

lda_processing (
337 # dataframe [’ reviews ’], vectorizer =None , lda_model =None ,

n_topics =5
338 #)
339 # for i in range(review_topics .shape [1]):
340 # dataframe [f’review_topic_ {i}’] = review_topics [:, i]
341

33

342 # 4.5 Amenities Clustering
343 print(" Processing amenities ...")
344 dataframe [’amenities ’] = dataframe [’amenities ’]. apply(
345 lambda x: str(x). replace (’[’, ’’). replace (’]’, ’’). replace (’"’,

’’).split(’, ’)
346)
347

348 # Generate cluster mapping if not provided
349 if amenities_cluster_mapping is None:
350 print(" Generating amenities cluster mapping ...")
351

352 # Extract all unique amenities
353 all_amenities = dataframe [’amenities ’]. explode (). unique (). tolist ()
354 print(f" Unique amenities found: {len(all_amenities)}")
355

356 # Generate embeddings using Sentence -BERT
357 sbert_model = SentenceTransformer (’all - distilroberta -v1’)
358 print(" Generating embeddings for amenities ...")
359 amenity_embeddings = sbert_model . encode (all_amenities)
360

361 # Perform clustering
362 kmeans = KMeans (n_clusters = num_clusters , random_state =42)
363 clusters = kmeans . fit_predict (amenity_embeddings)
364

365 # Map amenities to clusters
366 amenities_cluster_mapping = dict(zip(all_amenities , clusters))
367 print(" Amenity cluster mapping created .")
368

369 # Initialize cluster count columns
370 for cluster_id in range(num_clusters):
371 dataframe [f’amenity_cluster_ { cluster_id }’] = 0
372

373 # Count amenities per cluster for each row
374 print(" Counting amenities per cluster for each row ...")
375 for index , amenities_list in tqdm(dataframe [’amenities ’]. items (),

desc=" Processing amenities "):
376 cluster_counts = {}
377 for amenity in amenities_list :
378 if amenity in amenities_cluster_mapping :
379 cluster_id = amenities_cluster_mapping [amenity]
380 cluster_counts [cluster_id] = cluster_counts .get(cluster_id , 0) + 1
381

382 # Assign counts to respective cluster columns
383 for cluster_id , count in cluster_counts .items ():

34

384 dataframe .at[index , f’amenity_cluster_ { cluster_id }’] = count
385

386 # ###
387 # 5. Transform
388 # ###
389

390 # 5.1 Scale high - variance columns
391 # Select numeric columns (excluding ’price ’) for scaling
392 scale_sensitive_columns = dataframe . select_dtypes (include =[’float64 ’,

’int64 ’]). columns .drop(’price ’, errors =’ignore ’)
393 # Exclude ’amenity_cluster ’ columns from scaling
394 scale_sensitive_columns = [col for col in scale_sensitive_columns if

not col. startswith (’amenity_cluster ’)]
395

396 # Apply logarithmic transformation to high - variance columns
397 for col in scale_sensitive_columns :
398 if dataframe [col]. std () > 1: # Log - transform only if the standard

deviation is high
399 dataframe [col] = np.log1p(dataframe [col]) # Use log1p to handle zero

values safely
400

401 # 5.2 Drop unnecessary columns
402 columns_to_drop = [
403 ’name ’, ’description ’, ’reviews ’, ’amenities ’, ’property_type ’,
404 ’host_since ’, ’first_review ’, ’last_review ’, ’host_verifications ’,
405 ’phone ’, ’email ’, ’work_email ’, ’bathrooms_text ’, ’availability_365 ’,
406 ’has_availability ’
407]
408

409 # Drop specified columns , ignoring errors if they don ’t exist in the
dataframe

410 dataframe .drop(columns = columns_to_drop , inplace =True , errors =’ignore ’)
411

412

413 return dataframe , amenities_cluster_mapping , lda_model_desc ,
lda_model_reviews , vectorizer_desc , vectorizer_reviews

414

415

416 # Preprocess train and test datasets with shared mappings / models
417 train_data , amenities_cluster_mapping , lda_model_desc ,

lda_model_reviews , vectorizer_desc , vectorizer_reviews =
preprocess_airbnb_data (train_data)

418

419 test_data , _, _, _, _, _ = preprocess_airbnb_data (

35

420 test_data , amenities_cluster_mapping , lda_model_desc ,
lda_model_reviews , vectorizer_desc , vectorizer_reviews

421)
422

423 # One -hot encode categorical variables in train and test datasets
424 train_data_dummies = pd. get_dummies (train_data , drop_first =True)
425 test_data_dummies = pd. get_dummies (test_data , drop_first =True)
426

427 # Align test data columns with train data , filling missing columns
with 0

428 test_data_dummies =
test_data_dummies . reindex (columns = train_data_dummies .columns ,
fill_value =0)

429

430 # Ensure ’price ’ is not included in the test dataset
431 if ’price ’ in test_data_dummies . columns :
432 test_data_dummies = test_data_dummies .drop(columns =[’price ’])
433

434 # Verify the processed test dataset
435 test_data_dummies .head ()

Listing 5: Data Download
1 # This is the original data , but the LDA process is quite lengthy , so

we saved the original data with the LDA results included .
2 # The LDA code is provided in the preprocessing section but has been

commented out. import pandas as pd
3 # train_data = pd. read_csv (’/ content /drive/My Drive/Colab

Notebooks / final_project /train.csv ’, parse_dates =[’ host_since ’,
’first_review ’, ’last_review ’])

4 # test_data = pd. read_csv (’/ content /drive/My Drive/Colab
Notebooks / final_project /test.csv ’, parse_dates =[’ host_since ’,
’first_review ’, ’last_review ’])

5

6 train_data = pd. read_csv (’/ content /drive/My Drive/Colab
Notebooks / final_project / train_LDA .csv ’, parse_dates =[’host_since ’,
’first_review ’, ’last_review ’])

7 test_data = pd. read_csv (’/ content /drive/My Drive/Colab
Notebooks / final_project / test_LDA .csv ’, parse_dates =[’host_since ’,
’first_review ’, ’last_review ’])

8

9 # This is the processed amenities mapping used for analyzing
amenities , which is based on train_data

10 # and includes the parts I manually handled , so it can be directly

36

imported .
11 # The categories for numbering are roughly as follows :
12 # 0: Entertainment and networking facilities , such as wifi , TV ,

Bluetooth speakers
13 # 1: Safety - related items , such as locker , alarm
14 # 2: Kitchen - related items , such as oven , refrigerator
15 # 3: Daily necessities , such as shampoo , conditioner
16 # 4: Sports and health facilities , such as gym , pool
17 # 5: Additional or paid services
18 # 6: Family - or baby - friendly facilities
19 # 7: Unclear classifications , such as information related to days of

the week
20 amenities_df = pd. read_excel ("/ content /drive/My Drive/Colab

Notebooks / final_project / processed_amenities_cluster_mapping .xlsx")
21 amenities_cluster_mapping = dict(zip(amenities_df [’amenity ’],

amenities_df [’cluster_id ’]))
22 print("First 10 items in amenities_cluster_mapping :")
23 for i, (key , value) in enumerate (amenities_cluster_mapping .items ()):
24 print(f"{key }: {value}")
25 if i == 10:
26 break

Listing 6: Feature Importance
1 # Separate features and target
2 target = train_data_dummies [’price ’]
3 features = train_data_dummies .drop(columns =[’price ’])
4

5 # Train an XGBoost model
6 model = XGBRegressor (random_state =42, n_estimators =500 ,

learning_rate =0.05)
7 model.fit(features , target)
8

9 # Calculate Gini Gain -based feature importance
10 gini_importance = model. feature_importances_
11

12 # Calculate Permutation Importance
13 perm_importance = permutation_importance (model , features , target ,

n_repeats =10, random_state =42)
14

15 # Sort by Gini gain importance
16 sorted_idx_gini = np. argsort (gini_importance)[:: -1]
17 features_sorted_gini = features . columns [sorted_idx_gini]
18 gini_sorted = gini_importance [sorted_idx_gini]

37

19

20 # Sort by Permutation Importance
21 sorted_idx_perm = perm_importance . importances_mean . argsort () [:: -1]
22 features_sorted_perm = features . columns [sorted_idx_perm]
23 perm_sorted = perm_importance . importances_mean [sorted_idx_perm]
24

25 # Plot Gini Gain Feature Importance
26 plt. figure (figsize =(30 , 20))
27 plt.barh(features_sorted_gini , gini_sorted , color="blue", alpha =0.7)
28 plt.gca (). invert_yaxis ()
29 plt.title(" Feature Importances (Gini Gain)")
30 plt. xlabel (" Importance ")
31 plt.show ()
32

33 # Plot Permutation Importance
34 plt. figure (figsize =(30 , 20))
35 plt.barh(features_sorted_perm , perm_sorted , color="green", alpha =0.7)
36 plt.gca (). invert_yaxis ()
37 plt.title(" Feature Importances (Permutation Importance)")
38 plt. xlabel (" Importance ")
39 plt.show ()
40

41 import pandas as pd
42 import matplotlib . pyplot as plt
43 from sklearn . metrics import roc_curve , auc
44 from sklearn . preprocessing import label_binarize , LabelEncoder
45

46 # Assuming train_data_dummies is already loaded
47 # Extract ’price ’ as target and binarize it
48 target = train_data_dummies [’price ’]
49 features = train_data_dummies .drop(columns =[’price ’])
50

51 # Encode target into numeric classes if not already encoded
52 le = LabelEncoder ()
53 target_encoded = le. fit_transform (target)
54

55 # Binarize the target for multiclass OvR
56 target_binarized = label_binarize (target_encoded ,

classes =range(len(le. classes_)))
57

58 # Select a specific class (e.g., Class 0)
59 class_index = 0 # Change this index for other classes
60 class_name = le. classes_ [class_index]
61

38

62 # Initialize the plot
63 plt. figure (figsize =(40 , 30))
64

65 # Loop through each feature and plot ROC curve for the selected class
66 for feature in features . columns :
67 feature_values = features [feature]
68

69 # Handle missing values by filling with the median or another method
70 if feature_values .isna ().any ():
71 feature_values = feature_values . fillna (feature_values . median ())
72

73 # Handle non - numeric features by encoding them
74 if not pd.api.types. is_numeric_dtype (feature_values):
75 feature_values = pd. factorize (feature_values)[0]
76

77 # Compute ROC curve and AUC for the selected class
78 fpr , tpr , _ = roc_curve (target_binarized [:, class_index],

feature_values)
79 roc_auc = auc(fpr , tpr)
80

81 # Add the ROC curve to the plot
82 plt.plot(fpr , tpr , label=f’{ feature } (AUC = { roc_auc :.2f})’)
83

84 # Finalize the plot
85 plt.plot ([0, 1], [0, 1], ’k--’, label=’Random chance ’) # Diagonal

line
86 plt. xlabel (’False Positive Rate ’)
87 plt. ylabel (’True Positive Rate ’)
88 plt.title(f’ROC Curves for All Features (Class: { class_name })’)
89 plt. legend (loc=’best ’, bbox_to_anchor =(1.05 , 1))
90 plt.grid ()
91 plt. tight_layout ()
92 plt.show ()

Listing 7: Data Split
1 # Separate features and target from the train dataset
2 target = train_data_dummies [’price ’]
3 features = train_data_dummies .drop(columns =[’price ’])
4

5 # Split into training and testing sets (80% train , 20% test)
6 X_train , X_test , y_train , y_test = train_test_split (
7 features , target , test_size =0.2 , random_state =42
8)

39

9 print(f" Training set size: { X_train .shape}, Test set size:
{ X_test .shape}")

10

11 # Initialize the imputer for missing values
12 imputer = SimpleImputer (strategy =’median ’)
13

14 # Impute missing values for train and test sets
15 X_train = imputer . fit_transform (X_train)
16 X_test = imputer . transform (X_test)
17

18 # Impute missing values for the full training dataset and the true
test dataset

19 X_full_train = imputer . fit_transform (features) # Full training
features

20 y_full_train = target
21 X_true_test = imputer . transform (test_data_dummies) # True test

dataset features

Listing 8: XGBoost
1 # Ensure that X_train and y_train are NumPy arrays
2 X_train = np.array(X_train)
3 y_train = np.array(y_train)
4

5 # Parameter search range
6 n_estimators_range = [100 , 500, 1000]
7 learning_rate_range = [0.01 , 0.1, 0.5]
8 max_depth_range = [5, 7, 10]
9

10 # Cross - validation setup
11 kf = KFold(n_splits =5, shuffle =True , random_state =42)
12

13 # Store results for visualization
14 results = []
15

16 # Iterate through parameter combinations
17 for n_estimators in n_estimators_range :
18 for learning_rate in learning_rate_range :
19 for max_depth in max_depth_range :
20 print(f" Processing : n_estimators ={ n_estimators },

learning_rate ={ learning_rate }, max_depth ={ max_depth }")
21

22 rmse_scores = []
23

40

24 # 5-fold cross - validation
25 for train_index , valid_index in kf.split(X_train):
26 # Split training and validation sets
27 X_train_cv , X_valid_cv = X_train [train_index], X_train [valid_index]
28 y_train_cv , y_valid_cv = y_train [train_index], y_train [valid_index]
29

30 # Build the model
31 model_xgb = XGBRegressor (
32 n_estimators = n_estimators ,
33 learning_rate = learning_rate ,
34 max_depth =max_depth ,
35 tree_method ="hist", # Use histogram -based method for faster training
36 random_state =42
37)
38

39 # Train the model
40 model_xgb .fit(X_train_cv , y_train_cv , eval_set =[(X_valid_cv ,

y_valid_cv)], verbose =False)
41

42 # Predict on the validation set
43 y_pred_cv = model_xgb . predict (X_valid_cv)
44 rmse_cv = np.sqrt(mean_squared_error (y_valid_cv , y_pred_cv))
45 rmse_scores . append (rmse_cv)
46

47 # Calculate the average RMSE for the current parameter combination
48 mean_rmse = np.mean(rmse_scores)
49 print(f" Average RMSE: { mean_rmse :.4f}")
50

51 # Append the result for visualization
52 results . append ((n_estimators , learning_rate , max_depth , mean_rmse))
53

54 # Convert results to a structured format
55 results = np.array(results)
56 n_estimators_vals = results [:, 0]
57 learning_rate_vals = results [:, 1]
58 max_depth_vals = results [:, 2]
59 rmse_vals = results [:, 3]
60

61 # Find the best parameters and RMSE
62 best_index = np. argmin (rmse_vals)
63 best_params = {
64 " n_estimators ": int(n_estimators_vals [best_index]),
65 " learning_rate ": learning_rate_vals [best_index],
66 " max_depth ": int(max_depth_vals [best_index])

41

67 }
68 best_rmse = rmse_vals [best_index]
69

70 print("\ nOptimization complete .")
71 print("Best Parameters :")
72 print(best_params)
73 print(f"Best RMSE: { best_rmse :.4f}")
74

75 # Create an interactive 3D scatter plot with Plotly
76 fig = go. Figure ()
77

78 # Add scatter points
79 fig. add_trace (go. Scatter3d (
80 x= n_estimators_vals ,
81 y= learning_rate_vals ,
82 z= max_depth_vals ,
83 mode=’markers ’,
84 marker =dict(
85 size =8,
86 color=rmse_vals , # Color by RMSE
87 colorscale =’Viridis ’, # Color scale
88 colorbar =dict(title="RMSE"),
89 opacity =0.8
90)
91))
92

93 # Set axis labels and title
94 fig. update_layout (
95 scene=dict(
96 xaxis_title =" n_estimators ",
97 yaxis_title =" learning_rate ",
98 zaxis_title =" max_depth "
99),

100 title=" Interactive 3D Visualization of Hyperparameter Search ",
101 margin =dict(l=0, r=0, b=0, t=40)
102)
103

104 # Show the plot
105 fig.show ()
106

107

108 # Define the Optuna objective function
109 def objective (trial):
110 # Define hyperparameters to optimize

42

111 param = {
112 " n_estimators ": trial. suggest_int (" n_estimators ", 500, 1500) ,
113 " learning_rate ": trial. suggest_float (" learning_rate ", 0.01 , 0.2) ,
114 " max_depth ": trial. suggest_int (" max_depth ", 7, 15) ,
115 " subsample ": trial. suggest_float (" subsample ", 0.8, 1.0) ,
116 " colsample_bytree ": trial. suggest_float (" colsample_bytree ", 0.6,

1.0) ,
117 "gamma": trial. suggest_float ("gamma", 0.07 , 0.1) ,
118 " reg_alpha ": trial. suggest_float (" reg_alpha ", 1, 20) ,
119 " reg_lambda ": trial. suggest_float (" reg_lambda ", 0, 10) ,
120 " min_child_weight ": trial. suggest_int (" min_child_weight ", 1, 10) ,
121 " scale_pos_weight ": trial. suggest_float (" scale_pos_weight ", 1, 2),
122 " max_delta_step ": trial. suggest_int (" max_delta_step ", 0, 10) ,
123 " grow_policy ": " depthwise ",
124 " random_state ": 42
125 }
126

127 # Create XGBoost model
128 model_xgb = XGBRegressor (** param)
129

130 # Train the model
131 model_xgb .fit(X_train , y_train , eval_set =[(X_test , y_test)],

verbose =False)
132

133 # Predict on the validation set and calculate RMSE
134 y_pred_xgb = model_xgb . predict (X_test)
135 rmse_xgb = np.sqrt(mean_squared_error (y_test , y_pred_xgb))
136 return rmse_xgb
137

138 # Use Optuna to optimize hyperparameters
139 study_xgb = optuna . create_study (direction =" minimize ")
140 study_xgb . optimize (objective , n_trials =100) # Run 500 trials for the

final submission
141

142 # Print the best parameters and RMSE
143 print("Best parameters (XGBoost):", study_xgb . best_params)
144 print("Best RMSE (XGBoost):", study_xgb . best_value)
145 # Retrieve the top 51 trial parameters (51 for final submission)
146 top_trials_xgb =

study_xgb . trials_dataframe (). sort_values (by="value").head (11)
147 counter = 0
148 models_xgb = []
149

150 # Train models using the top 51 trial parameters

43

151 for _, trial_row in top_trials_xgb . iterrows ():
152 counter += 1
153 print(f" Training model { counter }...")
154

155 # Extract parameters
156 trial_number = int(trial_row [" number "])
157 best_params_xgb = study_xgb . trials [trial_number]. params
158

159 # Create and train the model
160 model_xgb = XGBRegressor (** best_params_xgb)
161 model_xgb .fit(X_train , y_train , verbose =False)
162 models_xgb . append (model_xgb)
163

164 # Get predictions from all models
165 predictions_xgb = np.array ([model. predict (X_test) for model in

models_xgb])
166

167 # Clip predictions to the range [0, 5] and round them
168 predictions_xgb_clipped = np.round(np.clip(predictions_xgb , 0, 5))
169

170 # Initialize the RMSE results list
171 rmse_results = []
172

173 # Compute RMSE for 1, 3, 5, ..., 51 models
174 for num_models in range (1, 12, 2): # 1, 3, 5, ..., 51
175 # Compute the mode of predictions from the first num_models models
176 y_pred_xgb_mode = mode(predictions_xgb_clipped [: num_models],

axis =0).mode. squeeze ()
177

178 # Ensure y_pred_xgb_mode is a 1D array with the same shape as y_test
179 y_pred_xgb_mode = y_pred_xgb_mode . flatten ()
180

181 # Compute RMSE and store the result
182 rmse_xgb = np.sqrt(mean_squared_error (y_test , y_pred_xgb_mode))
183 rmse_results . append ((num_models , rmse_xgb))
184

185 # Convert results to an array for further processing
186 rmse_results = np.array(rmse_results)
187

188 # Find the number of models that give the minimum RMSE
189 optimal_index = np. argmin (rmse_results [:, 1])
190 optimal_models = int(rmse_results [optimal_index , 0])
191 optimal_rmse = rmse_results [optimal_index , 1]
192

44

193 print(f" Optimal number of models : { optimal_models }")
194 print(f" Minimum RMSE: { optimal_rmse :.4f}")
195

196 # Plot RMSE vs. number of models
197 plt. figure (figsize =(10 , 6))
198 plt.plot(rmse_results [:, 0], rmse_results [:, 1], marker =’o’,

linestyle =’-’, color=’blue ’, label=’RMSE ’)
199 plt. axvline (optimal_models , color=’red ’, linestyle =’--’,

label=f’Optimal : { optimal_models } models ’)
200 plt.title(’RMSE vs. Number of Models ’, fontsize =16)
201 plt. xlabel (’Number of Models ’, fontsize =12)
202 plt. ylabel (’RMSE ’, fontsize =12)
203 plt.grid(alpha =0.3)
204 plt. legend ()
205 plt.show ()

Listing 9: SVM
1 # Standardize the features
2 scaler = StandardScaler ()
3 X_train_scaled = scaler . fit_transform (X_train)
4 X_test_scaled = scaler . transform (X_test)
5 X_train_scaled = np.array(X_train_scaled)
6 y_train = np.array(y_train)
7 # Define the parameter grid for hyperparameter tuning
8 param_grid = {
9 ’C’: [0.1 , 1, 10, 100] , # Regularization parameter

10 ’epsilon ’: [0.01 , 0.1, 0.2, 0.5] , # Epsilon in the epsilon -SVR
model

11 ’kernel ’: [’rbf ’] # Kernel types to consider
12 }
13

14 # Set up cross - validation
15 kf = KFold(n_splits =5, shuffle =True , random_state =42)
16

17 # Initialize variables to store the best result and all results for
visualization

18 best_rmse = float(’inf ’)
19 best_params = None
20 results = [] # Store all combinations for 3D visualization
21

22 # Manual Grid Search
23 print(" Starting manual grid search ...")
24 for kernel in param_grid [’kernel ’]:

45

25 for C in param_grid [’C’]:
26 for epsilon in param_grid [’epsilon ’]:
27 print(f" Training with kernel ={ kernel }, C={C}, epsilon ={ epsilon }")
28

29 rmse_scores = []
30 for train_index , val_index in kf.split(X_train_scaled):
31 # Split data into training and validation sets
32 X_train_cv , X_val_cv = X_train_scaled [train_index],

X_train_scaled [val_index]
33 y_train_cv , y_val_cv = y_train [train_index], y_train [val_index]
34

35 # Train the model
36 svr = SVR(kernel =kernel , C=C, epsilon = epsilon)
37 svr.fit(X_train_cv , y_train_cv)
38

39 # Predict and calculate RMSE
40 y_val_pred = svr. predict (X_val_cv)
41 rmse = np.sqrt(mean_squared_error (y_val_cv , y_val_pred))
42 rmse_scores . append (rmse)
43

44 # Calculate mean RMSE across folds
45 mean_rmse = np.mean(rmse_scores)
46 print(f"Mean RMSE: { mean_rmse :.4f}")
47

48 # Store the results for 3D visualization
49 results . append ((kernel , C, epsilon , mean_rmse))
50

51 # Update best parameters if current RMSE is better
52 if mean_rmse < best_rmse :
53 best_rmse = mean_rmse
54 best_params = {’kernel ’: kernel , ’C’: C, ’epsilon ’: epsilon }
55

56 # Train the final model with the best parameters on the full training
set

57 print("\ nTraining final model with best parameters ...")
58 print(f"Best Parameters : { best_params }")
59 svr = SVR (** best_params)
60 svr.fit(X_train_scaled , y_train)
61

62 # Predict on the test set
63 y_pred = svr. predict (X_test_scaled)
64

65 # Calculate RMSE on the test set
66 final_rmse = np.sqrt(mean_squared_error (y_test , y_pred))

46

67 print(f"Final Test RMSE: { final_rmse :.4f}")
68

69 # 3D Plot of RMSE values
70 results = np.array(results)
71 kernels = results [:, 0]
72 Cs = results [:, 1]. astype (float)
73 epsilons = results [:, 2]. astype (float)
74 rmses = results [:, 3]. astype (float)
75

76 # Convert kernel types to numeric values for 3D plotting
77 kernel_map = {’linear ’: 0, ’rbf ’: 1}
78 kernel_numeric = np.array ([kernel_map [k] for k in kernels])
79

80 fig = go. Figure ()
81

82 # Add scatter points
83 fig. add_trace (go. Scatter3d (
84 x=Cs ,
85 y=epsilons ,
86 z= kernel_numeric ,
87 mode=’markers ’,
88 marker =dict(
89 size =8,
90 color=rmses , # Color by RMSE
91 colorscale =’Viridis ’, # Color scale
92 colorbar =dict(title="RMSE"),
93 opacity =0.8
94)
95))
96

97 # Set axis labels and title
98 fig. update_layout (
99 scene=dict(

100 xaxis_title ="C (Regularization Parameter)",
101 yaxis_title =" Epsilon ",
102 zaxis_title =" Kernel (0= Linear , 1= RBF)"
103),
104 title="3D Visualization of Grid Search Results ",
105 margin =dict(l=0, r=0, b=0, t=40)
106)
107

108 # Show the plot
109 fig.show ()

47

Listing 10: Test
1 # Retrieve the top 10 trials for XGBoost
2 top_trials_xgb =

study_xgb . trials_dataframe (). sort_values (by="value").head (39)
3

4 # Use a bagging approach to retrain XGBoost models
5 models_xgb_test = []
6 for _, trial_row in top_trials_xgb . iterrows ():
7 # Extract parameters
8 trial_number = int(trial_row [" number "])
9 best_params_xgb = study_xgb . trials [trial_number]. params

10

11 # Create and train the model
12 model_xgb = XGBRegressor (** best_params_xgb)
13 model_xgb .fit(X_full_train , y_full_train , verbose =False)
14 models_xgb_test . append (model_xgb)
15

16 # Make predictions on the test set
17 predictions_xgb_test = np.array ([model. predict (X_true_test) for model

in models_xgb_test])
18 # Clip predictions to the range [0 ,5] and round to the nearest integer
19 predictions_xgb_clipped = np.round(np.clip(predictions_xgb_test , 0,

5)) # (10, n_samples)
20 # Take the mode (most common value) across models for each sample
21 y_pred_xgb_mode = mode(predictions_xgb_clipped ,

axis =0).mode. squeeze () # Remove unnecessary dimensions
22 # Ensure ‘y_pred_xgb_mode ‘ is a 1D array and matches the shape of

‘y_test ‘
23 y_pred_xgb_mode = y_pred_xgb_mode . flatten ()
24 # Final predictions for the test set
25 y_pred_xgb_test = y_pred_xgb_mode
26 # Load the test dataset
27 test_data = pd. read_csv (’/ content /drive/My Drive/Colab

Notebooks / final_project / test_LDA .csv ’, parse_dates =[’host_since ’,
’first_review ’, ’last_review ’])

28 # Assuming ‘test_data [’id ’]‘ is loaded , prepare the submission file
29 submission = pd. DataFrame ({
30 ’id’: test_data [’id’], # Unique identifier for the test set
31 ’price ’: y_pred_xgb_test # Predictions from the model
32 })
33

34 # Save the results as an Excel file
35 submission . to_excel (’/ content /drive/My Drive/Colab

48

Notebooks / final_project / submission .xlsx ’, index=False)
36 print("The submission file has been saved as submission .xlsx")

49

